|
1 |
|
2 import scala.language.implicitConversions |
|
3 import scala.language.reflectiveCalls |
|
4 import scala.annotation.tailrec |
|
5 import scala.util.Try |
|
6 |
|
7 def escape(raw: String) : String = { |
|
8 import scala.reflect.runtime.universe._ |
|
9 Literal(Constant(raw)).toString |
|
10 } |
|
11 |
|
12 def esc2(r: (String, String)) = (escape(r._1), escape(r._2)) |
|
13 |
|
14 |
|
15 |
|
16 // usual regular expressions |
|
17 abstract class Rexp |
|
18 case object ZERO extends Rexp |
|
19 case object ONE extends Rexp |
|
20 case class CHAR(c: Char) extends Rexp |
|
21 case class ALTS(rs: List[Rexp]) extends Rexp |
|
22 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp |
|
23 case class STAR(r: Rexp) extends Rexp |
|
24 case class RECD(x: String, r: Rexp) extends Rexp |
|
25 |
|
26 // abbreviations |
|
27 def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2)) |
|
28 |
|
29 // values |
|
30 abstract class Val |
|
31 case object Empty extends Val |
|
32 case class Chr(c: Char) extends Val |
|
33 case class Sequ(v1: Val, v2: Val) extends Val |
|
34 case class Left(v: Val) extends Val |
|
35 case class Right(v: Val) extends Val |
|
36 case class Stars(vs: List[Val]) extends Val |
|
37 case class Rec(x: String, v: Val) extends Val |
|
38 |
|
39 |
|
40 |
|
41 // some convenience for typing in regular expressions |
|
42 def charlist2rexp(s : List[Char]): Rexp = s match { |
|
43 case Nil => ONE |
|
44 case c::Nil => CHAR(c) |
|
45 case c::s => SEQ(CHAR(c), charlist2rexp(s)) |
|
46 } |
|
47 implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList) |
|
48 |
|
49 implicit def RexpOps(r: Rexp) = new { |
|
50 def | (s: Rexp) = ALT(r, s) |
|
51 def % = STAR(r) |
|
52 def ~ (s: Rexp) = SEQ(r, s) |
|
53 } |
|
54 |
|
55 implicit def stringOps(s: String) = new { |
|
56 def | (r: Rexp) = ALT(s, r) |
|
57 def | (r: String) = ALT(s, r) |
|
58 def % = STAR(s) |
|
59 def ~ (r: Rexp) = SEQ(s, r) |
|
60 def ~ (r: String) = SEQ(s, r) |
|
61 def $ (r: Rexp) = RECD(s, r) |
|
62 } |
|
63 |
|
64 |
|
65 // string of a regular expressions - for testing purposes |
|
66 def string(r: Rexp): String = r match { |
|
67 case ZERO => "0" |
|
68 case ONE => "1" |
|
69 case CHAR(c) => c.toString |
|
70 case ALTS(rs) => rs.map(string).mkString("[", "|", "]") |
|
71 case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})" |
|
72 case STAR(r) => s"{${string(r)}}*" |
|
73 case RECD(x, r) => s"(${x}! ${string(r)})" |
|
74 } |
|
75 |
|
76 |
|
77 //-------------------------------------------------------------- |
|
78 // START OF NON-BITCODE PART |
|
79 // |
|
80 |
|
81 // nullable function: tests whether the regular |
|
82 // expression can recognise the empty string |
|
83 def nullable (r: Rexp) : Boolean = r match { |
|
84 case ZERO => false |
|
85 case ONE => true |
|
86 case CHAR(_) => false |
|
87 case ALTS(rs) => rs.exists(nullable) |
|
88 case SEQ(r1, r2) => nullable(r1) && nullable(r2) |
|
89 case STAR(_) => true |
|
90 case RECD(_, r) => nullable(r) |
|
91 } |
|
92 |
|
93 // derivative of a regular expression w.r.t. a character |
|
94 def der (c: Char, r: Rexp) : Rexp = r match { |
|
95 case ZERO => ZERO |
|
96 case ONE => ZERO |
|
97 case CHAR(d) => if (c == d) ONE else ZERO |
|
98 case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2))) |
|
99 case SEQ(r1, r2) => |
|
100 if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2))) |
|
101 else SEQ(der(c, r1), r2) |
|
102 case STAR(r) => SEQ(der(c, r), STAR(r)) |
|
103 case RECD(_, r1) => der(c, r1) |
|
104 } |
|
105 |
|
106 |
|
107 def flatten(v: Val) : String = v match { |
|
108 case Empty => "" |
|
109 case Chr(c) => c.toString |
|
110 case Left(v) => flatten(v) |
|
111 case Right(v) => flatten(v) |
|
112 case Sequ(v1, v2) => flatten(v1) + flatten(v2) |
|
113 case Stars(vs) => vs.map(flatten).mkString |
|
114 case Rec(_, v) => flatten(v) |
|
115 } |
|
116 |
|
117 // extracts an environment from a value |
|
118 def env(v: Val) : List[(String, String)] = v match { |
|
119 case Empty => Nil |
|
120 case Chr(c) => Nil |
|
121 case Left(v) => env(v) |
|
122 case Right(v) => env(v) |
|
123 case Sequ(v1, v2) => env(v1) ::: env(v2) |
|
124 case Stars(vs) => vs.flatMap(env) |
|
125 case Rec(x, v) => (x, flatten(v))::env(v) |
|
126 } |
|
127 |
|
128 |
|
129 // injection part |
|
130 def mkeps(r: Rexp) : Val = r match { |
|
131 case ONE => Empty |
|
132 case ALTS(List(r1, r2)) => |
|
133 if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2)) |
|
134 case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2)) |
|
135 case STAR(r) => Stars(Nil) |
|
136 case RECD(x, r) => Rec(x, mkeps(r)) |
|
137 } |
|
138 |
|
139 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { |
|
140 case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs) |
|
141 case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2) |
|
142 case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2) |
|
143 case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2)) |
|
144 case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1)) |
|
145 case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2)) |
|
146 case (CHAR(_), Empty) => Chr(c) |
|
147 case (RECD(x, r1), _) => Rec(x, inj(r1, c, v)) |
|
148 } |
|
149 |
|
150 // lexing without simplification |
|
151 def lex(r: Rexp, s: List[Char]) : Val = s match { |
|
152 case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") |
|
153 case c::cs => inj(r, c, lex(der(c, r), cs)) |
|
154 } |
|
155 |
|
156 def lexing(r: Rexp, s: String) : Val = lex(r, s.toList) |
|
157 |
|
158 //println(lexing(("ab" | "ab") ~ ("b" | ONE), "ab")) |
|
159 |
|
160 // some "rectification" functions for simplification |
|
161 def F_ID(v: Val): Val = v |
|
162 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v)) |
|
163 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v)) |
|
164 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { |
|
165 case Right(v) => Right(f2(v)) |
|
166 case Left(v) => Left(f1(v)) |
|
167 } |
|
168 def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { |
|
169 case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) |
|
170 } |
|
171 def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = |
|
172 (v:Val) => Sequ(f1(Empty), f2(v)) |
|
173 def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = |
|
174 (v:Val) => Sequ(f1(v), f2(Empty)) |
|
175 def F_RECD(f: Val => Val) = (v:Val) => v match { |
|
176 case Rec(x, v) => Rec(x, f(v)) |
|
177 } |
|
178 def F_ERROR(v: Val): Val = throw new Exception("error") |
|
179 |
|
180 // simplification of regular expressions returning also an |
|
181 // rectification function; no simplification under STAR |
|
182 def simp(r: Rexp): (Rexp, Val => Val) = r match { |
|
183 case ALTS(List(r1, r2)) => { |
|
184 val (r1s, f1s) = simp(r1) |
|
185 val (r2s, f2s) = simp(r2) |
|
186 (r1s, r2s) match { |
|
187 case (ZERO, _) => (r2s, F_RIGHT(f2s)) |
|
188 case (_, ZERO) => (r1s, F_LEFT(f1s)) |
|
189 case _ => if (r1s == r2s) (r1s, F_LEFT(f1s)) |
|
190 else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s)) |
|
191 } |
|
192 } |
|
193 case SEQ(r1, r2) => { |
|
194 val (r1s, f1s) = simp(r1) |
|
195 val (r2s, f2s) = simp(r2) |
|
196 (r1s, r2s) match { |
|
197 case (ZERO, _) => (ZERO, F_ERROR) |
|
198 case (_, ZERO) => (ZERO, F_ERROR) |
|
199 case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s)) |
|
200 case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s)) |
|
201 case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s)) |
|
202 } |
|
203 } |
|
204 case RECD(x, r1) => { |
|
205 val (r1s, f1s) = simp(r1) |
|
206 (RECD(x, r1s), F_RECD(f1s)) |
|
207 } |
|
208 case r => (r, F_ID) |
|
209 } |
|
210 |
|
211 def ders_simp(s: List[Char], r: Rexp) : Rexp = s match { |
|
212 case Nil => r |
|
213 case c::s => ders_simp(s, simp(der(c, r))._1) |
|
214 } |
|
215 |
|
216 |
|
217 def lex_simp(r: Rexp, s: List[Char]) : Val = s match { |
|
218 case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") |
|
219 case c::cs => { |
|
220 val (r_simp, f_simp) = simp(der(c, r)) |
|
221 inj(r, c, f_simp(lex_simp(r_simp, cs))) |
|
222 } |
|
223 } |
|
224 |
|
225 def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList) |
|
226 |
|
227 //println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab")) |
|
228 |
|
229 |
|
230 def tokenise_simp(r: Rexp, s: String) = |
|
231 env(lexing_simp(r, s)).map(esc2) |
|
232 |
|
233 //-------------------------------------------------------------------- |
|
234 // Partial Derivatives |
|
235 |
|
236 |
|
237 def pder(c: Char, r: Rexp): Set[Rexp] = r match { |
|
238 case ZERO => Set() |
|
239 case ONE => Set() |
|
240 case CHAR(d) => if (c == d) Set(ONE) else Set() |
|
241 case ALTS(rs) => rs.toSet.flatMap(pder(c, _)) |
|
242 case SEQ(r1, r2) => |
|
243 (for (pr1 <- pder(c, r1)) yield SEQ(pr1, r2)) ++ |
|
244 (if (nullable(r1)) pder(c, r2) else Set()) |
|
245 case STAR(r1) => |
|
246 for (pr1 <- pder(c, r1)) yield SEQ(pr1, STAR(r1)) |
|
247 case RECD(_, r1) => pder(c, r1) |
|
248 } |
|
249 |
|
250 def pders(cs: List[Char], r: Rexp): Set[Rexp] = cs match { |
|
251 case Nil => Set(r) |
|
252 case c::cs => pder(c, r).flatMap(pders(cs, _)) |
|
253 } |
|
254 |
|
255 def pders_simp(cs: List[Char], r: Rexp): Set[Rexp] = cs match { |
|
256 case Nil => Set(r) |
|
257 case c::cs => pder(c, r).flatMap(pders_simp(cs, _)).map(simp(_)._1) |
|
258 } |
|
259 |
|
260 def psize(rs: Set[Rexp]) = |
|
261 rs.map(size).sum |
|
262 |
|
263 |
|
264 // A simple parser for regexes |
|
265 |
|
266 case class Parser(s: String) { |
|
267 var i = 0 |
|
268 |
|
269 def peek() = s(i) |
|
270 def eat(c: Char) = |
|
271 if (c == s(i)) i = i + 1 else throw new Exception("Expected " + c + " got " + s(i)) |
|
272 def next() = { i = i + 1; s(i - 1) } |
|
273 def more() = s.length - i > 0 |
|
274 |
|
275 def Regex() : Rexp = { |
|
276 val t = Term(); |
|
277 if (more() && peek() == '|') { |
|
278 eat ('|') ; |
|
279 ALT(t, Regex()) |
|
280 } |
|
281 else t |
|
282 } |
|
283 |
|
284 def Term() : Rexp = { |
|
285 var f : Rexp = |
|
286 if (more() && peek() != ')' && peek() != '|') Factor() else ONE; |
|
287 while (more() && peek() != ')' && peek() != '|') { |
|
288 f = SEQ(f, Factor()) ; |
|
289 } |
|
290 f |
|
291 } |
|
292 |
|
293 def Factor() : Rexp = { |
|
294 var b = Base(); |
|
295 while (more() && peek() == '*') { |
|
296 eat('*') ; |
|
297 b = STAR(b) ; |
|
298 } |
|
299 while (more() && peek() == '?') { |
|
300 eat('?') ; |
|
301 b = ALT(b, ONE) ; |
|
302 } |
|
303 while (more() && peek() == '+') { |
|
304 eat('+') ; |
|
305 b = SEQ(b, STAR(b)) ; |
|
306 } |
|
307 b |
|
308 } |
|
309 |
|
310 def Base() : Rexp = { |
|
311 peek() match { |
|
312 case '(' => { eat('(') ; val r = Regex(); eat(')') ; r } // if groups should be groups RECD("",r) } |
|
313 case _ => CHAR(next()) |
|
314 } |
|
315 } |
|
316 } |
|
317 |
|
318 // two simple examples for the regex parser |
|
319 |
|
320 println("two simple examples for the regex parser") |
|
321 |
|
322 println(string(Parser("a|(bc)*").Regex())) |
|
323 println(string(Parser("(a|b)*(babab(a|b)*bab|bba(a|b)*bab)(a|b)*").Regex())) |
|
324 |
|
325 |
|
326 |
|
327 //System.exit(0) |
|
328 |
|
329 // Testing |
|
330 //============ |
|
331 |
|
332 def time[T](code: => T) = { |
|
333 val start = System.nanoTime() |
|
334 val result = code |
|
335 val end = System.nanoTime() |
|
336 ((end - start)/1.0e9).toString |
|
337 //result |
|
338 } |
|
339 |
|
340 def timeR[T](code: => T) = { |
|
341 val start = System.nanoTime() |
|
342 for (i <- 1 to 10) code |
|
343 val result = code |
|
344 val end = System.nanoTime() |
|
345 (result, (end - start)) |
|
346 } |
|
347 |
|
348 //size: of a Aregx for testing purposes |
|
349 def size(r: Rexp) : Int = r match { |
|
350 case ZERO => 1 |
|
351 case ONE => 1 |
|
352 case CHAR(_) => 1 |
|
353 case SEQ(r1, r2) => 1 + size(r1) + size(r2) |
|
354 case ALTS(rs) => 1 + rs.map(size).sum |
|
355 case STAR(r) => 1 + size(r) |
|
356 case RECD(_, r) => size(r) |
|
357 } |
|
358 |
|
359 //enumerates strings of length n over alphabet cs |
|
360 def strs(n: Int, cs: String) : Set[String] = { |
|
361 if (n == 0) Set("") |
|
362 else { |
|
363 val ss = strs(n - 1, cs) |
|
364 ss ++ |
|
365 (for (s <- ss; c <- cs.toList) yield c + s) |
|
366 } |
|
367 } |
|
368 |
|
369 def enum(n: Int, s: String) : Stream[Rexp] = n match { |
|
370 case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR) |
|
371 case n => { |
|
372 val rs = enum(n - 1, s) |
|
373 rs #::: |
|
374 (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #::: |
|
375 (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #::: |
|
376 (for (r1 <- rs) yield STAR(r1)) |
|
377 } |
|
378 } |
|
379 |
|
380 |
|
381 |
|
382 |
|
383 println("Antimirov Example 5.5") |
|
384 |
|
385 val antimirov = Parser("(a|b)*(babab(a|b)*bab|bba(a|b)*bab)(a|b)*").Regex() |
|
386 val strings = strs(6, "ab") |
|
387 val pds = strings.flatMap(s => pders(s.toList, antimirov)) |
|
388 val pds_simplified = pds.map(simp(_)._1) |
|
389 |
|
390 |
|
391 println("Unsimplified set") |
|
392 println(pds.map(string).mkString("\n")) |
|
393 println("Number of pds " + pds.size) |
|
394 println("\nSimplified set") |
|
395 println(pds_simplified.map(string).mkString("\n")) |
|
396 println("Number of pds " + pds_simplified.size) |
|
397 |
|
398 |
|
399 |
|
400 |
|
401 def fact(n: Int) : Int = |
|
402 if (n == 0) 1 else n * fact(n - 1) |