diff -r 8b8db9558ecf -r 8b0b414e71b0 exps/antimirov.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/exps/antimirov.scala Wed Feb 20 00:00:30 2019 +0000 @@ -0,0 +1,402 @@ + +import scala.language.implicitConversions +import scala.language.reflectiveCalls +import scala.annotation.tailrec +import scala.util.Try + +def escape(raw: String) : String = { + import scala.reflect.runtime.universe._ + Literal(Constant(raw)).toString +} + +def esc2(r: (String, String)) = (escape(r._1), escape(r._2)) + + + +// usual regular expressions +abstract class Rexp +case object ZERO extends Rexp +case object ONE extends Rexp +case class CHAR(c: Char) extends Rexp +case class ALTS(rs: List[Rexp]) extends Rexp +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp +case class STAR(r: Rexp) extends Rexp +case class RECD(x: String, r: Rexp) extends Rexp + +// abbreviations +def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2)) + +// values +abstract class Val +case object Empty extends Val +case class Chr(c: Char) extends Val +case class Sequ(v1: Val, v2: Val) extends Val +case class Left(v: Val) extends Val +case class Right(v: Val) extends Val +case class Stars(vs: List[Val]) extends Val +case class Rec(x: String, v: Val) extends Val + + + +// some convenience for typing in regular expressions +def charlist2rexp(s : List[Char]): Rexp = s match { + case Nil => ONE + case c::Nil => CHAR(c) + case c::s => SEQ(CHAR(c), charlist2rexp(s)) +} +implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList) + +implicit def RexpOps(r: Rexp) = new { + def | (s: Rexp) = ALT(r, s) + def % = STAR(r) + def ~ (s: Rexp) = SEQ(r, s) +} + +implicit def stringOps(s: String) = new { + def | (r: Rexp) = ALT(s, r) + def | (r: String) = ALT(s, r) + def % = STAR(s) + def ~ (r: Rexp) = SEQ(s, r) + def ~ (r: String) = SEQ(s, r) + def $ (r: Rexp) = RECD(s, r) +} + + +// string of a regular expressions - for testing purposes +def string(r: Rexp): String = r match { + case ZERO => "0" + case ONE => "1" + case CHAR(c) => c.toString + case ALTS(rs) => rs.map(string).mkString("[", "|", "]") + case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})" + case STAR(r) => s"{${string(r)}}*" + case RECD(x, r) => s"(${x}! ${string(r)})" +} + + +//-------------------------------------------------------------- +// START OF NON-BITCODE PART +// + +// nullable function: tests whether the regular +// expression can recognise the empty string +def nullable (r: Rexp) : Boolean = r match { + case ZERO => false + case ONE => true + case CHAR(_) => false + case ALTS(rs) => rs.exists(nullable) + case SEQ(r1, r2) => nullable(r1) && nullable(r2) + case STAR(_) => true + case RECD(_, r) => nullable(r) +} + +// derivative of a regular expression w.r.t. a character +def der (c: Char, r: Rexp) : Rexp = r match { + case ZERO => ZERO + case ONE => ZERO + case CHAR(d) => if (c == d) ONE else ZERO + case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2))) + case SEQ(r1, r2) => + if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2))) + else SEQ(der(c, r1), r2) + case STAR(r) => SEQ(der(c, r), STAR(r)) + case RECD(_, r1) => der(c, r1) +} + + +def flatten(v: Val) : String = v match { + case Empty => "" + case Chr(c) => c.toString + case Left(v) => flatten(v) + case Right(v) => flatten(v) + case Sequ(v1, v2) => flatten(v1) + flatten(v2) + case Stars(vs) => vs.map(flatten).mkString + case Rec(_, v) => flatten(v) +} + +// extracts an environment from a value +def env(v: Val) : List[(String, String)] = v match { + case Empty => Nil + case Chr(c) => Nil + case Left(v) => env(v) + case Right(v) => env(v) + case Sequ(v1, v2) => env(v1) ::: env(v2) + case Stars(vs) => vs.flatMap(env) + case Rec(x, v) => (x, flatten(v))::env(v) +} + + +// injection part +def mkeps(r: Rexp) : Val = r match { + case ONE => Empty + case ALTS(List(r1, r2)) => + if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2)) + case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2)) + case STAR(r) => Stars(Nil) + case RECD(x, r) => Rec(x, mkeps(r)) +} + +def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { + case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs) + case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2)) + case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1)) + case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2)) + case (CHAR(_), Empty) => Chr(c) + case (RECD(x, r1), _) => Rec(x, inj(r1, c, v)) +} + +// lexing without simplification +def lex(r: Rexp, s: List[Char]) : Val = s match { + case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") + case c::cs => inj(r, c, lex(der(c, r), cs)) +} + +def lexing(r: Rexp, s: String) : Val = lex(r, s.toList) + +//println(lexing(("ab" | "ab") ~ ("b" | ONE), "ab")) + +// some "rectification" functions for simplification +def F_ID(v: Val): Val = v +def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v)) +def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v)) +def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Right(v) => Right(f2(v)) + case Left(v) => Left(f1(v)) +} +def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) +} +def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = + (v:Val) => Sequ(f1(Empty), f2(v)) +def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = + (v:Val) => Sequ(f1(v), f2(Empty)) +def F_RECD(f: Val => Val) = (v:Val) => v match { + case Rec(x, v) => Rec(x, f(v)) +} +def F_ERROR(v: Val): Val = throw new Exception("error") + +// simplification of regular expressions returning also an +// rectification function; no simplification under STAR +def simp(r: Rexp): (Rexp, Val => Val) = r match { + case ALTS(List(r1, r2)) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (ZERO, _) => (r2s, F_RIGHT(f2s)) + case (_, ZERO) => (r1s, F_LEFT(f1s)) + case _ => if (r1s == r2s) (r1s, F_LEFT(f1s)) + else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s)) + } + } + case SEQ(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (ZERO, _) => (ZERO, F_ERROR) + case (_, ZERO) => (ZERO, F_ERROR) + case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s)) + case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s)) + case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s)) + } + } + case RECD(x, r1) => { + val (r1s, f1s) = simp(r1) + (RECD(x, r1s), F_RECD(f1s)) + } + case r => (r, F_ID) +} + +def ders_simp(s: List[Char], r: Rexp) : Rexp = s match { + case Nil => r + case c::s => ders_simp(s, simp(der(c, r))._1) +} + + +def lex_simp(r: Rexp, s: List[Char]) : Val = s match { + case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") + case c::cs => { + val (r_simp, f_simp) = simp(der(c, r)) + inj(r, c, f_simp(lex_simp(r_simp, cs))) + } +} + +def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList) + +//println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab")) + + +def tokenise_simp(r: Rexp, s: String) = + env(lexing_simp(r, s)).map(esc2) + +//-------------------------------------------------------------------- +// Partial Derivatives + + +def pder(c: Char, r: Rexp): Set[Rexp] = r match { + case ZERO => Set() + case ONE => Set() + case CHAR(d) => if (c == d) Set(ONE) else Set() + case ALTS(rs) => rs.toSet.flatMap(pder(c, _)) + case SEQ(r1, r2) => + (for (pr1 <- pder(c, r1)) yield SEQ(pr1, r2)) ++ + (if (nullable(r1)) pder(c, r2) else Set()) + case STAR(r1) => + for (pr1 <- pder(c, r1)) yield SEQ(pr1, STAR(r1)) + case RECD(_, r1) => pder(c, r1) +} + +def pders(cs: List[Char], r: Rexp): Set[Rexp] = cs match { + case Nil => Set(r) + case c::cs => pder(c, r).flatMap(pders(cs, _)) +} + +def pders_simp(cs: List[Char], r: Rexp): Set[Rexp] = cs match { + case Nil => Set(r) + case c::cs => pder(c, r).flatMap(pders_simp(cs, _)).map(simp(_)._1) +} + +def psize(rs: Set[Rexp]) = + rs.map(size).sum + + +// A simple parser for regexes + +case class Parser(s: String) { + var i = 0 + + def peek() = s(i) + def eat(c: Char) = + if (c == s(i)) i = i + 1 else throw new Exception("Expected " + c + " got " + s(i)) + def next() = { i = i + 1; s(i - 1) } + def more() = s.length - i > 0 + + def Regex() : Rexp = { + val t = Term(); + if (more() && peek() == '|') { + eat ('|') ; + ALT(t, Regex()) + } + else t + } + + def Term() : Rexp = { + var f : Rexp = + if (more() && peek() != ')' && peek() != '|') Factor() else ONE; + while (more() && peek() != ')' && peek() != '|') { + f = SEQ(f, Factor()) ; + } + f + } + + def Factor() : Rexp = { + var b = Base(); + while (more() && peek() == '*') { + eat('*') ; + b = STAR(b) ; + } + while (more() && peek() == '?') { + eat('?') ; + b = ALT(b, ONE) ; + } + while (more() && peek() == '+') { + eat('+') ; + b = SEQ(b, STAR(b)) ; + } + b + } + + def Base() : Rexp = { + peek() match { + case '(' => { eat('(') ; val r = Regex(); eat(')') ; r } // if groups should be groups RECD("",r) } + case _ => CHAR(next()) + } + } +} + +// two simple examples for the regex parser + +println("two simple examples for the regex parser") + +println(string(Parser("a|(bc)*").Regex())) +println(string(Parser("(a|b)*(babab(a|b)*bab|bba(a|b)*bab)(a|b)*").Regex())) + + + +//System.exit(0) + +// Testing +//============ + +def time[T](code: => T) = { + val start = System.nanoTime() + val result = code + val end = System.nanoTime() + ((end - start)/1.0e9).toString + //result +} + +def timeR[T](code: => T) = { + val start = System.nanoTime() + for (i <- 1 to 10) code + val result = code + val end = System.nanoTime() + (result, (end - start)) +} + +//size: of a Aregx for testing purposes +def size(r: Rexp) : Int = r match { + case ZERO => 1 + case ONE => 1 + case CHAR(_) => 1 + case SEQ(r1, r2) => 1 + size(r1) + size(r2) + case ALTS(rs) => 1 + rs.map(size).sum + case STAR(r) => 1 + size(r) + case RECD(_, r) => size(r) +} + +//enumerates strings of length n over alphabet cs +def strs(n: Int, cs: String) : Set[String] = { + if (n == 0) Set("") + else { + val ss = strs(n - 1, cs) + ss ++ + (for (s <- ss; c <- cs.toList) yield c + s) + } +} + +def enum(n: Int, s: String) : Stream[Rexp] = n match { + case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR) + case n => { + val rs = enum(n - 1, s) + rs #::: + (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #::: + (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #::: + (for (r1 <- rs) yield STAR(r1)) + } +} + + + + +println("Antimirov Example 5.5") + +val antimirov = Parser("(a|b)*(babab(a|b)*bab|bba(a|b)*bab)(a|b)*").Regex() +val strings = strs(6, "ab") +val pds = strings.flatMap(s => pders(s.toList, antimirov)) +val pds_simplified = pds.map(simp(_)._1) + + +println("Unsimplified set") +println(pds.map(string).mkString("\n")) +println("Number of pds " + pds.size) +println("\nSimplified set") +println(pds_simplified.map(string).mkString("\n")) +println("Number of pds " + pds_simplified.size) + + + + +def fact(n: Int) : Int = + if (n == 0) 1 else n * fact(n - 1)