thys/Lexer.thy
changeset 185 841f7b9c0a6a
parent 172 cdc0bdcfba3f
child 186 0b94800eb616
equal deleted inserted replaced
184:a42c773ec8ab 185:841f7b9c0a6a
       
     1    
       
     2 theory Lexer
       
     3   imports Main
       
     4 begin
       
     5 
       
     6 
       
     7 section {* Sequential Composition of Languages *}
       
     8 
       
     9 definition
       
    10   Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
       
    11 where 
       
    12   "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
       
    13 
       
    14 text {* Two Simple Properties about Sequential Composition *}
       
    15 
       
    16 lemma seq_empty [simp]:
       
    17   shows "A ;; {[]} = A"
       
    18   and   "{[]} ;; A = A"
       
    19 by (simp_all add: Sequ_def)
       
    20 
       
    21 lemma seq_null [simp]:
       
    22   shows "A ;; {} = {}"
       
    23   and   "{} ;; A = {}"
       
    24 by (simp_all add: Sequ_def)
       
    25 
       
    26 
       
    27 section {* Semantic Derivative (Left Quotient) of Languages *}
       
    28 
       
    29 definition
       
    30   Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
       
    31 where
       
    32   "Der c A \<equiv> {s. c # s \<in> A}"
       
    33 
       
    34 lemma Der_null [simp]:
       
    35   shows "Der c {} = {}"
       
    36 unfolding Der_def
       
    37 by auto
       
    38 
       
    39 lemma Der_empty [simp]:
       
    40   shows "Der c {[]} = {}"
       
    41 unfolding Der_def
       
    42 by auto
       
    43 
       
    44 lemma Der_char [simp]:
       
    45   shows "Der c {[d]} = (if c = d then {[]} else {})"
       
    46 unfolding Der_def
       
    47 by auto
       
    48 
       
    49 lemma Der_union [simp]:
       
    50   shows "Der c (A \<union> B) = Der c A \<union> Der c B"
       
    51 unfolding Der_def
       
    52 by auto
       
    53 
       
    54 lemma Der_Sequ [simp]:
       
    55   shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
       
    56 unfolding Der_def Sequ_def
       
    57 by (auto simp add: Cons_eq_append_conv)
       
    58 
       
    59 
       
    60 section {* Kleene Star for Languages *}
       
    61 
       
    62 inductive_set
       
    63   Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
       
    64   for A :: "string set"
       
    65 where
       
    66   start[intro]: "[] \<in> A\<star>"
       
    67 | step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
       
    68 
       
    69 lemma star_cases:
       
    70   shows "A\<star> = {[]} \<union> A ;; A\<star>"
       
    71 unfolding Sequ_def
       
    72 by (auto) (metis Star.simps)
       
    73 
       
    74 lemma star_decomp: 
       
    75   assumes a: "c # x \<in> A\<star>" 
       
    76   shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
       
    77 using a
       
    78 by (induct x\<equiv>"c # x" rule: Star.induct) 
       
    79    (auto simp add: append_eq_Cons_conv)
       
    80 
       
    81 lemma Der_star [simp]:
       
    82   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
       
    83 proof -    
       
    84   have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
       
    85     by (simp only: star_cases[symmetric])
       
    86   also have "... = Der c (A ;; A\<star>)"
       
    87     by (simp only: Der_union Der_empty) (simp)
       
    88   also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
       
    89     by simp
       
    90   also have "... =  (Der c A) ;; A\<star>"
       
    91     unfolding Sequ_def Der_def
       
    92     by (auto dest: star_decomp)
       
    93   finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
       
    94 qed
       
    95 
       
    96 
       
    97 section {* Regular Expressions *}
       
    98 
       
    99 datatype rexp =
       
   100   ZERO
       
   101 | ONE
       
   102 | CHAR char
       
   103 | SEQ rexp rexp
       
   104 | ALT rexp rexp
       
   105 | STAR rexp
       
   106 
       
   107 section {* Semantics of Regular Expressions *}
       
   108  
       
   109 fun
       
   110   L :: "rexp \<Rightarrow> string set"
       
   111 where
       
   112   "L (ZERO) = {}"
       
   113 | "L (ONE) = {[]}"
       
   114 | "L (CHAR c) = {[c]}"
       
   115 | "L (SEQ r1 r2) = (L r1) ;; (L r2)"
       
   116 | "L (ALT r1 r2) = (L r1) \<union> (L r2)"
       
   117 | "L (STAR r) = (L r)\<star>"
       
   118 
       
   119 
       
   120 section {* Nullable, Derivatives *}
       
   121 
       
   122 fun
       
   123  nullable :: "rexp \<Rightarrow> bool"
       
   124 where
       
   125   "nullable (ZERO) = False"
       
   126 | "nullable (ONE) = True"
       
   127 | "nullable (CHAR c) = False"
       
   128 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
       
   129 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
       
   130 | "nullable (STAR r) = True"
       
   131 
       
   132 
       
   133 fun
       
   134  der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
       
   135 where
       
   136   "der c (ZERO) = ZERO"
       
   137 | "der c (ONE) = ZERO"
       
   138 | "der c (CHAR d) = (if c = d then ONE else ZERO)"
       
   139 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
       
   140 | "der c (SEQ r1 r2) = 
       
   141      (if nullable r1
       
   142       then ALT (SEQ (der c r1) r2) (der c r2)
       
   143       else SEQ (der c r1) r2)"
       
   144 | "der c (STAR r) = SEQ (der c r) (STAR r)"
       
   145 
       
   146 fun 
       
   147  ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
       
   148 where
       
   149   "ders [] r = r"
       
   150 | "ders (c # s) r = ders s (der c r)"
       
   151 
       
   152 
       
   153 lemma nullable_correctness:
       
   154   shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
       
   155 by (induct r) (auto simp add: Sequ_def) 
       
   156 
       
   157 
       
   158 lemma der_correctness:
       
   159   shows "L (der c r) = Der c (L r)"
       
   160 by (induct r) (simp_all add: nullable_correctness)
       
   161 
       
   162 
       
   163 section {* Values *}
       
   164 
       
   165 datatype val = 
       
   166   Void
       
   167 | Char char
       
   168 | Seq val val
       
   169 | Right val
       
   170 | Left val
       
   171 | Stars "val list"
       
   172 
       
   173 
       
   174 section {* The string behind a value *}
       
   175 
       
   176 fun 
       
   177   flat :: "val \<Rightarrow> string"
       
   178 where
       
   179   "flat (Void) = []"
       
   180 | "flat (Char c) = [c]"
       
   181 | "flat (Left v) = flat v"
       
   182 | "flat (Right v) = flat v"
       
   183 | "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
       
   184 | "flat (Stars []) = []"
       
   185 | "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
       
   186 
       
   187 lemma flat_Stars [simp]:
       
   188  "flat (Stars vs) = concat (map flat vs)"
       
   189 by (induct vs) (auto)
       
   190 
       
   191 
       
   192 section {* Relation between values and regular expressions *}
       
   193 
       
   194 inductive 
       
   195   Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
       
   196 where
       
   197  "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
       
   198 | "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
       
   199 | "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
       
   200 | "\<turnstile> Void : ONE"
       
   201 | "\<turnstile> Char c : CHAR c"
       
   202 | "\<turnstile> Stars [] : STAR r"
       
   203 | "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"
       
   204 
       
   205 inductive_cases Prf_elims:
       
   206   "\<turnstile> v : ZERO"
       
   207   "\<turnstile> v : SEQ r1 r2"
       
   208   "\<turnstile> v : ALT r1 r2"
       
   209   "\<turnstile> v : ONE"
       
   210   "\<turnstile> v : CHAR c"
       
   211 (*  "\<turnstile> vs : STAR r"*)
       
   212 
       
   213 lemma Prf_flat_L:
       
   214   assumes "\<turnstile> v : r" shows "flat v \<in> L r"
       
   215 using assms
       
   216 by(induct v r rule: Prf.induct)
       
   217   (auto simp add: Sequ_def)
       
   218 
       
   219 lemma Prf_Stars:
       
   220   assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
       
   221   shows "\<turnstile> Stars vs : STAR r"
       
   222 using assms
       
   223 by(induct vs) (auto intro: Prf.intros)
       
   224 
       
   225 lemma Star_string:
       
   226   assumes "s \<in> A\<star>"
       
   227   shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
       
   228 using assms
       
   229 apply(induct rule: Star.induct)
       
   230 apply(auto)
       
   231 apply(rule_tac x="[]" in exI)
       
   232 apply(simp)
       
   233 apply(rule_tac x="s1#ss" in exI)
       
   234 apply(simp)
       
   235 done
       
   236 
       
   237 
       
   238 lemma Star_val:
       
   239   assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
       
   240   shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
       
   241 using assms
       
   242 apply(induct ss)
       
   243 apply(auto)
       
   244 apply (metis empty_iff list.set(1))
       
   245 by (metis concat.simps(2) list.simps(9) set_ConsD)
       
   246 
       
   247 lemma L_flat_Prf1:
       
   248   assumes "\<turnstile> v : r" shows "flat v \<in> L r"
       
   249 using assms
       
   250 by (induct)(auto simp add: Sequ_def)
       
   251 
       
   252 lemma L_flat_Prf2:
       
   253   assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
       
   254 using assms
       
   255 apply(induct r arbitrary: s)
       
   256 apply(auto simp add: Sequ_def intro: Prf.intros)
       
   257 using Prf.intros(1) flat.simps(5) apply blast
       
   258 using Prf.intros(2) flat.simps(3) apply blast
       
   259 using Prf.intros(3) flat.simps(4) apply blast
       
   260 apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
       
   261 apply(auto)[1]
       
   262 apply(rule_tac x="Stars vs" in exI)
       
   263 apply(simp)
       
   264 apply (simp add: Prf_Stars)
       
   265 apply(drule Star_string)
       
   266 apply(auto)
       
   267 apply(rule Star_val)
       
   268 apply(auto)
       
   269 done
       
   270 
       
   271 lemma L_flat_Prf:
       
   272   "L(r) = {flat v | v. \<turnstile> v : r}"
       
   273 using L_flat_Prf1 L_flat_Prf2 by blast
       
   274 
       
   275 
       
   276 section {* Sulzmann and Lu functions *}
       
   277 
       
   278 fun 
       
   279   mkeps :: "rexp \<Rightarrow> val"
       
   280 where
       
   281   "mkeps(ONE) = Void"
       
   282 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
       
   283 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
       
   284 | "mkeps(STAR r) = Stars []"
       
   285 
       
   286 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
       
   287 where
       
   288   "injval (CHAR d) c Void = Char d"
       
   289 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
       
   290 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
       
   291 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
       
   292 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
       
   293 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
       
   294 | "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
       
   295 
       
   296 
       
   297 section {* Mkeps, injval *}
       
   298 
       
   299 lemma mkeps_nullable:
       
   300   assumes "nullable(r)" 
       
   301   shows "\<turnstile> mkeps r : r"
       
   302 using assms
       
   303 by (induct rule: nullable.induct) 
       
   304    (auto intro: Prf.intros)
       
   305 
       
   306 lemma mkeps_flat:
       
   307   assumes "nullable(r)" 
       
   308   shows "flat (mkeps r) = []"
       
   309 using assms
       
   310 by (induct rule: nullable.induct) (auto)
       
   311 
       
   312 
       
   313 lemma Prf_injval:
       
   314   assumes "\<turnstile> v : der c r" 
       
   315   shows "\<turnstile> (injval r c v) : r"
       
   316 using assms
       
   317 apply(induct r arbitrary: c v rule: rexp.induct)
       
   318 apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
       
   319 (* STAR *)
       
   320 apply(rotate_tac 2)
       
   321 apply(erule Prf.cases)
       
   322 apply(simp_all)[7]
       
   323 apply(auto)
       
   324 apply (metis Prf.intros(6) Prf.intros(7))
       
   325 by (metis Prf.intros(7))
       
   326 
       
   327 lemma Prf_injval_flat:
       
   328   assumes "\<turnstile> v : der c r" 
       
   329   shows "flat (injval r c v) = c # (flat v)"
       
   330 using assms
       
   331 apply(induct arbitrary: v rule: der.induct)
       
   332 apply(auto elim!: Prf_elims split: if_splits)
       
   333 apply(metis mkeps_flat)
       
   334 apply(rotate_tac 2)
       
   335 apply(erule Prf.cases)
       
   336 apply(simp_all)[7]
       
   337 done
       
   338 
       
   339 
       
   340 
       
   341 section {* Our Alternative Posix definition *}
       
   342 
       
   343 inductive 
       
   344   Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
       
   345 where
       
   346   Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
       
   347 | Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
       
   348 | Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
       
   349 | Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
       
   350 | Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
       
   351     \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
       
   352     (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
       
   353 | Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
       
   354     \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
       
   355     \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
       
   356 | Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
       
   357 
       
   358 inductive_cases Posix_elims:
       
   359   "s \<in> ZERO \<rightarrow> v"
       
   360   "s \<in> ONE \<rightarrow> v"
       
   361   "s \<in> CHAR c \<rightarrow> v"
       
   362   "s \<in> ALT r1 r2 \<rightarrow> v"
       
   363   "s \<in> SEQ r1 r2 \<rightarrow> v"
       
   364   "s \<in> STAR r \<rightarrow> v"
       
   365 
       
   366 lemma Posix1:
       
   367   assumes "s \<in> r \<rightarrow> v"
       
   368   shows "s \<in> L r" "flat v = s"
       
   369 using assms
       
   370 by (induct s r v rule: Posix.induct)
       
   371    (auto simp add: Sequ_def)
       
   372 
       
   373 
       
   374 lemma Posix1a:
       
   375   assumes "s \<in> r \<rightarrow> v"
       
   376   shows "\<turnstile> v : r"
       
   377 using assms
       
   378 by (induct s r v rule: Posix.induct)(auto intro: Prf.intros)
       
   379 
       
   380 
       
   381 lemma Posix_mkeps:
       
   382   assumes "nullable r"
       
   383   shows "[] \<in> r \<rightarrow> mkeps r"
       
   384 using assms
       
   385 apply(induct r rule: nullable.induct)
       
   386 apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
       
   387 apply(subst append.simps(1)[symmetric])
       
   388 apply(rule Posix.intros)
       
   389 apply(auto)
       
   390 done
       
   391 
       
   392 
       
   393 lemma Posix_determ:
       
   394   assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
       
   395   shows "v1 = v2"
       
   396 using assms
       
   397 proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
       
   398   case (Posix_ONE v2)
       
   399   have "[] \<in> ONE \<rightarrow> v2" by fact
       
   400   then show "Void = v2" by cases auto
       
   401 next 
       
   402   case (Posix_CHAR c v2)
       
   403   have "[c] \<in> CHAR c \<rightarrow> v2" by fact
       
   404   then show "Char c = v2" by cases auto
       
   405 next 
       
   406   case (Posix_ALT1 s r1 v r2 v2)
       
   407   have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
       
   408   moreover
       
   409   have "s \<in> r1 \<rightarrow> v" by fact
       
   410   then have "s \<in> L r1" by (simp add: Posix1)
       
   411   ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
       
   412   moreover
       
   413   have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
       
   414   ultimately have "v = v'" by simp
       
   415   then show "Left v = v2" using eq by simp
       
   416 next 
       
   417   case (Posix_ALT2 s r2 v r1 v2)
       
   418   have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
       
   419   moreover
       
   420   have "s \<notin> L r1" by fact
       
   421   ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
       
   422     by cases (auto simp add: Posix1) 
       
   423   moreover
       
   424   have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
       
   425   ultimately have "v = v'" by simp
       
   426   then show "Right v = v2" using eq by simp
       
   427 next
       
   428   case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
       
   429   have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
       
   430        "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
       
   431        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
       
   432   then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
       
   433   apply(cases) apply (auto simp add: append_eq_append_conv2)
       
   434   using Posix1(1) by fastforce+
       
   435   moreover
       
   436   have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
       
   437             "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
       
   438   ultimately show "Seq v1 v2 = v'" by simp
       
   439 next
       
   440   case (Posix_STAR1 s1 r v s2 vs v2)
       
   441   have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
       
   442        "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
       
   443        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
       
   444   then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
       
   445   apply(cases) apply (auto simp add: append_eq_append_conv2)
       
   446   using Posix1(1) apply fastforce
       
   447   apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
       
   448   using Posix1(2) by blast
       
   449   moreover
       
   450   have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
       
   451             "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
       
   452   ultimately show "Stars (v # vs) = v2" by auto
       
   453 next
       
   454   case (Posix_STAR2 r v2)
       
   455   have "[] \<in> STAR r \<rightarrow> v2" by fact
       
   456   then show "Stars [] = v2" by cases (auto simp add: Posix1)
       
   457 qed
       
   458 
       
   459 
       
   460 lemma Posix_injval:
       
   461   assumes "s \<in> (der c r) \<rightarrow> v"
       
   462   shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
       
   463 using assms
       
   464 proof(induct r arbitrary: s v rule: rexp.induct)
       
   465   case ZERO
       
   466   have "s \<in> der c ZERO \<rightarrow> v" by fact
       
   467   then have "s \<in> ZERO \<rightarrow> v" by simp
       
   468   then have "False" by cases
       
   469   then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
       
   470 next
       
   471   case ONE
       
   472   have "s \<in> der c ONE \<rightarrow> v" by fact
       
   473   then have "s \<in> ZERO \<rightarrow> v" by simp
       
   474   then have "False" by cases
       
   475   then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
       
   476 next 
       
   477   case (CHAR d)
       
   478   consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
       
   479   then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
       
   480   proof (cases)
       
   481     case eq
       
   482     have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
       
   483     then have "s \<in> ONE \<rightarrow> v" using eq by simp
       
   484     then have eqs: "s = [] \<and> v = Void" by cases simp
       
   485     show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
       
   486     by (auto intro: Posix.intros)
       
   487   next
       
   488     case ineq
       
   489     have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
       
   490     then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
       
   491     then have "False" by cases
       
   492     then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
       
   493   qed
       
   494 next
       
   495   case (ALT r1 r2)
       
   496   have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
       
   497   have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
       
   498   have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
       
   499   then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
       
   500   then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
       
   501               | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
       
   502               by cases auto
       
   503   then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
       
   504   proof (cases)
       
   505     case left
       
   506     have "s \<in> der c r1 \<rightarrow> v'" by fact
       
   507     then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
       
   508     then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
       
   509     then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
       
   510   next 
       
   511     case right
       
   512     have "s \<notin> L (der c r1)" by fact
       
   513     then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
       
   514     moreover 
       
   515     have "s \<in> der c r2 \<rightarrow> v'" by fact
       
   516     then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
       
   517     ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
       
   518       by (auto intro: Posix.intros)
       
   519     then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
       
   520   qed
       
   521 next
       
   522   case (SEQ r1 r2)
       
   523   have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
       
   524   have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
       
   525   have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
       
   526   then consider 
       
   527         (left_nullable) v1 v2 s1 s2 where 
       
   528         "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
       
   529         "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
       
   530         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
       
   531       | (right_nullable) v1 s1 s2 where 
       
   532         "v = Right v1" "s = s1 @ s2"  
       
   533         "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
       
   534       | (not_nullable) v1 v2 s1 s2 where
       
   535         "v = Seq v1 v2" "s = s1 @ s2" 
       
   536         "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
       
   537         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
       
   538         by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
       
   539   then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
       
   540     proof (cases)
       
   541       case left_nullable
       
   542       have "s1 \<in> der c r1 \<rightarrow> v1" by fact
       
   543       then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
       
   544       moreover
       
   545       have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
       
   546       then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
       
   547       ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
       
   548       then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
       
   549     next
       
   550       case right_nullable
       
   551       have "nullable r1" by fact
       
   552       then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
       
   553       moreover
       
   554       have "s \<in> der c r2 \<rightarrow> v1" by fact
       
   555       then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
       
   556       moreover
       
   557       have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
       
   558       then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
       
   559         by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
       
   560       ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
       
   561       by(rule Posix.intros)
       
   562       then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
       
   563     next
       
   564       case not_nullable
       
   565       have "s1 \<in> der c r1 \<rightarrow> v1" by fact
       
   566       then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
       
   567       moreover
       
   568       have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
       
   569       then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
       
   570       ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
       
   571         by (rule_tac Posix.intros) (simp_all) 
       
   572       then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
       
   573     qed
       
   574 next
       
   575   case (STAR r)
       
   576   have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
       
   577   have "s \<in> der c (STAR r) \<rightarrow> v" by fact
       
   578   then consider
       
   579       (cons) v1 vs s1 s2 where 
       
   580         "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
       
   581         "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
       
   582         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
       
   583         apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
       
   584         apply(rotate_tac 3)
       
   585         apply(erule_tac Posix_elims(6))
       
   586         apply (simp add: Posix.intros(6))
       
   587         using Posix.intros(7) by blast
       
   588     then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
       
   589     proof (cases)
       
   590       case cons
       
   591           have "s1 \<in> der c r \<rightarrow> v1" by fact
       
   592           then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
       
   593         moreover
       
   594           have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
       
   595         moreover 
       
   596           have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
       
   597           then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
       
   598           then have "flat (injval r c v1) \<noteq> []" by simp
       
   599         moreover 
       
   600           have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
       
   601           then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
       
   602             by (simp add: der_correctness Der_def)
       
   603         ultimately 
       
   604         have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
       
   605         then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
       
   606     qed
       
   607 qed
       
   608 
       
   609 
       
   610 section {* The Lexer by Sulzmann and Lu  *}
       
   611 
       
   612 fun 
       
   613   lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
       
   614 where
       
   615   "lexer r [] = (if nullable r then Some(mkeps r) else None)"
       
   616 | "lexer r (c#s) = (case (lexer (der c r) s) of  
       
   617                     None \<Rightarrow> None
       
   618                   | Some(v) \<Rightarrow> Some(injval r c v))"
       
   619 
       
   620 
       
   621 lemma lexer_correct_None:
       
   622   shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
       
   623 using assms
       
   624 apply(induct s arbitrary: r)
       
   625 apply(simp add: nullable_correctness)
       
   626 apply(drule_tac x="der a r" in meta_spec)
       
   627 apply(auto simp add: der_correctness Der_def)
       
   628 done
       
   629 
       
   630 lemma lexer_correct_Some:
       
   631   shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
       
   632 using assms
       
   633 apply(induct s arbitrary: r)
       
   634 apply(auto simp add: Posix_mkeps nullable_correctness)[1]
       
   635 apply(drule_tac x="der a r" in meta_spec)
       
   636 apply(simp add: der_correctness Der_def)
       
   637 apply(rule iffI)
       
   638 apply(auto intro: Posix_injval simp add: Posix1(1))
       
   639 done 
       
   640 
       
   641 
       
   642 end