103 \hline |
103 \hline |
104 $Left(w_1) \succ_{(der\;c\;r_1) \cdot r_2 + der\;c\;r_2} Right(w_2)$ |
104 $Left(w_1) \succ_{(der\;c\;r_1) \cdot r_2 + der\;c\;r_2} Right(w_2)$ |
105 \end{tabular} |
105 \end{tabular} |
106 \end{center} |
106 \end{center} |
107 |
107 |
|
108 \noindent |
|
109 This means we can also assume in this case |
|
110 |
|
111 \[ |
|
112 (e)\quad len\,|w_1| \geq len\,|w_2| |
|
113 \] |
|
114 |
|
115 \noindent |
|
116 which is the premise of the rule above. |
|
117 Instantiating $v_1$ and $v_2$ in the assumptions (b) and (c) |
|
118 gives us |
|
119 |
|
120 \begin{center} |
|
121 \begin{tabular}{ll} |
|
122 (b*) & $\vdash Left(w_1) : (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$\\ |
|
123 (c*) & $\vdash Right(w_2) : (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$\\ |
|
124 \end{tabular} |
|
125 \end{center} |
|
126 |
|
127 \noindent Since these are assumptions, we can further analyse |
|
128 how they could have arisen according to the rules of $\vdash |
|
129 \_ : \_\,$. This gives us two new assumptions |
|
130 |
|
131 \begin{center} |
|
132 \begin{tabular}{ll} |
|
133 (b**) & $\vdash w_1 : (der\;c\;r_1) \cdot r_2$\\ |
|
134 (c**) & $\vdash w_2 : der\;c\;r_2$\\ |
|
135 \end{tabular} |
|
136 \end{center} |
|
137 |
|
138 \noindent |
|
139 Looking at (b**) we can further analyse how this |
|
140 judgement could have arisen. This tells us that $w_1$ |
|
141 must have been a sequence, say $u_1\cdot u_2$, with |
|
142 |
|
143 \begin{center} |
|
144 \begin{tabular}{ll} |
|
145 (b***) & $\vdash u_1 : der\;c\;r_1$\\ |
|
146 & $\vdash u_2 : r_2$\\ |
|
147 \end{tabular} |
|
148 \end{center} |
|
149 |
|
150 \noindent |
|
151 Instantiating the goal means we need to prove |
|
152 |
|
153 \[ |
|
154 inj\; (r_1 \cdot r_2)\;c\;(Left(u_1\cdot u_2)) \succ_{r_1 \cdot r_2} |
|
155 inj\; (r_1 \cdot r_2)\;c\;(Right(w_2)) |
|
156 \] |
|
157 |
|
158 \noindent |
|
159 We can simplify this according to the rules of $inj$: |
|
160 |
|
161 \[ |
|
162 (inj\; r_1\;c\;u_1)\cdot u_2 \succ_{r_1 \cdot r_2} |
|
163 (mkeps\;r_1) \cdot (inj\; r_2\;c\;w_2) |
|
164 \] |
|
165 |
|
166 \noindent |
|
167 This is what we need to prove. |
|
168 |
|
169 |
108 \subsubsection*{Case RL} |
170 \subsubsection*{Case RL} |
109 |
171 |
110 The corresponding rule (instantiated) is: |
172 The corresponding rule (instantiated) is: |
111 |
173 |
112 \begin{center} |
174 \begin{center} |