diff -r 5bc72d6d633d -r 7093e600ec2c thys/notes.tex --- a/thys/notes.tex Thu Jan 29 23:42:44 2015 +0000 +++ b/thys/notes.tex Fri Jan 30 11:42:53 2015 +0000 @@ -105,6 +105,68 @@ \end{tabular} \end{center} +\noindent +This means we can also assume in this case + +\[ +(e)\quad len\,|w_1| \geq len\,|w_2| +\] + +\noindent +which is the premise of the rule above. +Instantiating $v_1$ and $v_2$ in the assumptions (b) and (c) +gives us + +\begin{center} +\begin{tabular}{ll} +(b*) & $\vdash Left(w_1) : (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$\\ +(c*) & $\vdash Right(w_2) : (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$\\ +\end{tabular} +\end{center} + +\noindent Since these are assumptions, we can further analyse +how they could have arisen according to the rules of $\vdash +\_ : \_\,$. This gives us two new assumptions + +\begin{center} +\begin{tabular}{ll} +(b**) & $\vdash w_1 : (der\;c\;r_1) \cdot r_2$\\ +(c**) & $\vdash w_2 : der\;c\;r_2$\\ +\end{tabular} +\end{center} + +\noindent +Looking at (b**) we can further analyse how this +judgement could have arisen. This tells us that $w_1$ +must have been a sequence, say $u_1\cdot u_2$, with + +\begin{center} +\begin{tabular}{ll} +(b***) & $\vdash u_1 : der\;c\;r_1$\\ + & $\vdash u_2 : r_2$\\ +\end{tabular} +\end{center} + +\noindent +Instantiating the goal means we need to prove + +\[ +inj\; (r_1 \cdot r_2)\;c\;(Left(u_1\cdot u_2)) \succ_{r_1 \cdot r_2} +inj\; (r_1 \cdot r_2)\;c\;(Right(w_2)) +\] + +\noindent +We can simplify this according to the rules of $inj$: + +\[ +(inj\; r_1\;c\;u_1)\cdot u_2 \succ_{r_1 \cdot r_2} +(mkeps\;r_1) \cdot (inj\; r_2\;c\;w_2) +\] + +\noindent +This is what we need to prove. + + \subsubsection*{Case RL} The corresponding rule (instantiated) is: