progs/scala/re-simp.scala
changeset 157 1fe44fb6d0a4
parent 156 6a43ea9305ba
child 158 4e00dd2398ac
equal deleted inserted replaced
156:6a43ea9305ba 157:1fe44fb6d0a4
       
     1 import scala.language.implicitConversions    
       
     2 import scala.language.reflectiveCalls
       
     3 import scala.annotation.tailrec   
       
     4 
       
     5 abstract class Rexp 
       
     6 case object ZERO extends Rexp
       
     7 case object ONE extends Rexp
       
     8 case class CHAR(c: Char) extends Rexp
       
     9 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
       
    10 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
       
    11 case class STAR(r: Rexp) extends Rexp 
       
    12 case class RECD(x: String, r: Rexp) extends Rexp
       
    13 
       
    14 abstract class Val
       
    15 case object Empty extends Val
       
    16 case class Chr(c: Char) extends Val
       
    17 case class Sequ(v1: Val, v2: Val) extends Val
       
    18 case class Left(v: Val) extends Val
       
    19 case class Right(v: Val) extends Val
       
    20 case class Stars(vs: List[Val]) extends Val
       
    21 case class Rec(x: String, v: Val) extends Val
       
    22    
       
    23 // some convenience for typing in regular expressions
       
    24 def charlist2rexp(s : List[Char]): Rexp = s match {
       
    25   case Nil => ONE
       
    26   case c::Nil => CHAR(c)
       
    27   case c::s => SEQ(CHAR(c), charlist2rexp(s))
       
    28 }
       
    29 implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
       
    30 
       
    31 implicit def RexpOps(r: Rexp) = new {
       
    32   def | (s: Rexp) = ALT(r, s)
       
    33   def % = STAR(r)
       
    34   def ~ (s: Rexp) = SEQ(r, s)
       
    35 }
       
    36 
       
    37 implicit def stringOps(s: String) = new {
       
    38   def | (r: Rexp) = ALT(s, r)
       
    39   def | (r: String) = ALT(s, r)
       
    40   def % = STAR(s)
       
    41   def ~ (r: Rexp) = SEQ(s, r)
       
    42   def ~ (r: String) = SEQ(s, r)
       
    43   def $ (r: Rexp) = RECD(s, r)
       
    44 }
       
    45 
       
    46 // nullable function: tests whether the regular 
       
    47 // expression can recognise the empty string
       
    48 def nullable (r: Rexp) : Boolean = r match {
       
    49   case ZERO => false
       
    50   case ONE => true
       
    51   case CHAR(_) => false
       
    52   case ALT(r1, r2) => nullable(r1) || nullable(r2)
       
    53   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
       
    54   case STAR(_) => true
       
    55   case RECD(_, r1) => nullable(r1)
       
    56 }
       
    57 
       
    58 // derivative of a regular expression w.r.t. a character
       
    59 def der (c: Char, r: Rexp) : Rexp = r match {
       
    60   case ZERO => ZERO
       
    61   case ONE => ZERO
       
    62   case CHAR(d) => if (c == d) ONE else ZERO
       
    63   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
       
    64   case SEQ(r1, r2) => 
       
    65     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
       
    66     else SEQ(der(c, r1), r2)
       
    67   case STAR(r) => SEQ(der(c, r), STAR(r))
       
    68   case RECD(_, r1) => der(c, r1)
       
    69 }
       
    70 
       
    71 // derivative w.r.t. a string (iterates der)
       
    72 def ders (s: List[Char], r: Rexp) : Rexp = s match {
       
    73   case Nil => r
       
    74   case c::s => ders(s, der(c, r))
       
    75 }
       
    76 
       
    77 // extracts a string from value
       
    78 def flatten(v: Val) : String = v match {
       
    79   case Empty => ""
       
    80   case Chr(c) => c.toString
       
    81   case Left(v) => flatten(v)
       
    82   case Right(v) => flatten(v)
       
    83   case Sequ(v1, v2) => flatten(v1) + flatten(v2)
       
    84   case Stars(vs) => vs.map(flatten(_)).mkString
       
    85   case Rec(_, v) => flatten(v)
       
    86 }
       
    87 
       
    88 
       
    89 // extracts an environment from a value
       
    90 def env(v: Val) : List[(String, String)] = v match {
       
    91   case Empty => Nil
       
    92   case Chr(c) => Nil
       
    93   case Left(v) => env(v)
       
    94   case Right(v) => env(v)
       
    95   case Sequ(v1, v2) => env(v1) ::: env(v2)
       
    96   case Stars(vs) => vs.flatMap(env)
       
    97   case Rec(x, v) => (x, flatten(v))::env(v)
       
    98 }
       
    99 
       
   100 // injection part
       
   101 def mkeps(r: Rexp) : Val = r match {
       
   102   case ONE => Empty
       
   103   case ALT(r1, r2) => 
       
   104     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
       
   105   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
       
   106   case STAR(r) => Stars(Nil)
       
   107   case RECD(x, r) => Rec(x, mkeps(r))
       
   108 }
       
   109 
       
   110 
       
   111 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
       
   112   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
       
   113   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
       
   114   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
       
   115   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
       
   116   case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
       
   117   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
       
   118   case (CHAR(d), Empty) => Chr(c) 
       
   119   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
       
   120 }
       
   121 
       
   122 // main unsimplified lexing function (produces a value)
       
   123 def lex(r: Rexp, s: List[Char]) : Val = s match {
       
   124   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
       
   125   case c::cs => inj(r, c, lex(der(c, r), cs))
       
   126 }
       
   127 
       
   128 def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
       
   129 
       
   130 
       
   131 // some "rectification" functions for simplification
       
   132 def F_ID(v: Val): Val = v
       
   133 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
       
   134 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
       
   135 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
       
   136   case Right(v) => Right(f2(v))
       
   137   case Left(v) => Left(f1(v))
       
   138 }
       
   139 def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
       
   140   case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
       
   141 }
       
   142 def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(Empty), f2(v))
       
   143 def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(v), f2(Empty))
       
   144 def F_RECD(f: Val => Val) = (v:Val) => v match {
       
   145   case Rec(x, v) => Rec(x, f(v))
       
   146 }
       
   147 def F_ERROR(v: Val): Val = throw new Exception("error")
       
   148 
       
   149 // simplification of regular expressions returning also an
       
   150 // rectification function; no simplification under STAR 
       
   151 def simp(r: Rexp): (Rexp, Val => Val) = r match {
       
   152   case ALT(r1, r2) => {
       
   153     val (r1s, f1s) = simp(r1)
       
   154     val (r2s, f2s) = simp(r2)
       
   155     (r1s, r2s) match {
       
   156       case (ZERO, _) => (r2s, F_RIGHT(f2s))
       
   157       case (_, ZERO) => (r1s, F_LEFT(f1s))
       
   158       case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
       
   159                 else (ALT (r1s, r2s), F_ALT(f1s, f2s)) 
       
   160     }
       
   161   }
       
   162   case SEQ(r1, r2) => {
       
   163     val (r1s, f1s) = simp(r1)
       
   164     val (r2s, f2s) = simp(r2)
       
   165     (r1s, r2s) match {
       
   166       case (ZERO, _) => (ZERO, F_ERROR)
       
   167       case (_, ZERO) => (ZERO, F_ERROR)
       
   168       case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
       
   169       case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
       
   170       case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
       
   171     }
       
   172   }
       
   173   case RECD(x, r1) => {
       
   174     val (r1s, f1s) = simp(r1)
       
   175     (RECD(x, r1s), F_RECD(f1s))
       
   176   }
       
   177   case r => (r, F_ID)
       
   178 }
       
   179 
       
   180 def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
       
   181   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
       
   182   case c::cs => {
       
   183     val (r_simp, f_simp) = simp(der(c, r))
       
   184     inj(r, c, f_simp(lex_simp(r_simp, cs)))
       
   185   }
       
   186 }
       
   187 
       
   188 def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
       
   189 
       
   190 
       
   191 // Some Tests
       
   192 //============
       
   193 
       
   194 def time[T](code: => T) = {
       
   195   val start = System.nanoTime()
       
   196   val result = code
       
   197   val end = System.nanoTime()
       
   198   println((end - start)/1.0e9)
       
   199   result
       
   200 }
       
   201 
       
   202 val r0 = ("a" | "ab") ~ ("b" | "")
       
   203 println(lexing(r0, "ab"))
       
   204 println(lexing_simp(r0, "ab"))
       
   205 
       
   206 val r1 = ("a" | "ab") ~ ("bcd" | "cd")
       
   207 println(lexing_simp(r1, "abcd"))
       
   208 
       
   209 println(lexing_simp((("" | "a") ~ ("ab" | "b")), "ab"))
       
   210 println(lexing_simp((("" | "a") ~ ("b" | "ab")), "ab"))
       
   211 println(lexing_simp((("" | "a") ~ ("c" | "ab")), "ab"))
       
   212 
       
   213 
       
   214 
       
   215 // Two Simple Tests for the While Language
       
   216 //========================================
       
   217 
       
   218 // Lexing Rules 
       
   219 
       
   220 def PLUS(r: Rexp) = r ~ r.%
       
   221 val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
       
   222 val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
       
   223 val ID = SYM ~ (SYM | DIGIT).% 
       
   224 val NUM = PLUS(DIGIT)
       
   225 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
       
   226 val SEMI: Rexp = ";"
       
   227 val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
       
   228 val WHITESPACE = PLUS(" " | "\n" | "\t")
       
   229 val RPAREN: Rexp = ")"
       
   230 val LPAREN: Rexp = "("
       
   231 val BEGIN: Rexp = "{"
       
   232 val END: Rexp = "}"
       
   233 val STRING: Rexp = "\"" ~ SYM.% ~ "\""
       
   234 
       
   235 
       
   236 val WHILE_REGS = (("k" $ KEYWORD) | 
       
   237                   ("i" $ ID) | 
       
   238                   ("o" $ OP) | 
       
   239                   ("n" $ NUM) | 
       
   240                   ("s" $ SEMI) | 
       
   241                   ("str" $ STRING) |
       
   242                   ("p" $ (LPAREN | RPAREN)) | 
       
   243                   ("b" $ (BEGIN | END)) | 
       
   244                   ("w" $ WHITESPACE)).%
       
   245 
       
   246 /*
       
   247 val WHILE_REGS = (KEYWORD | 
       
   248                   ID | 
       
   249                   OP | 
       
   250                   NUM | 
       
   251                   SEMI | 
       
   252                   LPAREN | RPAREN | 
       
   253                   BEGIN | END | 
       
   254                   WHITESPACE).%
       
   255 */
       
   256 
       
   257 
       
   258 println("prog0 test")
       
   259 
       
   260 val prog0 = """read n"""
       
   261 println(env(lexing_simp(WHILE_REGS, prog0)))
       
   262 
       
   263 println("prog1 test")
       
   264 
       
   265 val prog1 = """read  n; write (n)"""
       
   266 println(env(lexing_simp(WHILE_REGS, prog1)))
       
   267 
       
   268 
       
   269 // Big Test
       
   270 //==========
       
   271 val prog2 = """
       
   272 i := 2;
       
   273 max := 100;
       
   274 while i < max do {
       
   275   isprime := 1;
       
   276   j := 2;
       
   277   while (j * j) <= i + 1  do {
       
   278     if i % j == 0 then isprime := 0  else skip;
       
   279     j := j + 1
       
   280   };
       
   281   if isprime == 1 then write i else skip;
       
   282   i := i + 1
       
   283 }"""
       
   284 
       
   285 println("prog2 test - tokens")
       
   286 println(env(lexing_simp(WHILE_REGS, prog2)))
       
   287 
       
   288 
       
   289 val prog3 = """
       
   290 write "fib";
       
   291 read n;
       
   292 minus1 := 0;
       
   293 minus2 := 1;
       
   294 while n > 0 do {
       
   295   temp := minus2;
       
   296   minus2 := minus1 + minus2;
       
   297   minus1 := temp;
       
   298   n := n - 1
       
   299 };
       
   300 write "result";
       
   301 write minus2
       
   302 """
       
   303 
       
   304 println("prog3 test - tokens")
       
   305 println(env(lexing_simp(WHILE_REGS, prog3)))
       
   306 
       
   307 /*
       
   308 for (i <- 1 to 80) {
       
   309   print(i.toString + ":  ")
       
   310   time(lexing_simp(WHILE_REGS, prog2 * i))
       
   311 }
       
   312 */
       
   313