thys/Paper/Paper.thy
changeset 132 03ca57e3f199
parent 131 ac831326441c
child 133 23e68b81a908
equal deleted inserted replaced
131:ac831326441c 132:03ca57e3f199
   901   An extended version of \cite{Sulzmann2014} is available at the website of
   901   An extended version of \cite{Sulzmann2014} is available at the website of
   902   its first author; this includes some ``proofs'', claimed in
   902   its first author; this includes some ``proofs'', claimed in
   903   \cite{Sulzmann2014} to be ``rigorous''. Since these are evidently not in
   903   \cite{Sulzmann2014} to be ``rigorous''. Since these are evidently not in
   904   final form, we make no comment thereon, preferring to give general reasons
   904   final form, we make no comment thereon, preferring to give general reasons
   905   for our belief that the approach of \cite{Sulzmann2014} is problematic.
   905   for our belief that the approach of \cite{Sulzmann2014} is problematic.
   906   Their central definition is an ``ordering relation''
   906   Their central definition is an ``ordering relation'' defined by the
       
   907   rules (slightly adapted to fit our notation):
   907 
   908 
   908 \begin{center}  
   909 \begin{center}  
   909 \begin{tabular}{c@ {\hspace{5mm}}c}		 
   910 \begin{tabular}{@ {}c@ {\hspace{2mm}}c@ {}}		 
   910 $\infer{v_{1} \posix_{r_{1}} v'_{1}} 
   911 $\infer{v_{1} \posix_{r_{1}} v'_{1}} 
   911        {Seq\,v_{1}\,v_{2} \posix_{r_{1}r_{2}} Seq\,v'_{1}\,v'_{2}}(C2)$
   912        {Seq\,v_{1}\,v_{2} \posix_{r_{1}r_{2}} Seq\,v'_{1}\,v'_{2}}(C2)$
   912 &
   913 &
   913 $\infer{v_{2} \posix_{r_{2}} v'_{2}} 
   914 $\infer{v_{2} \posix_{r_{2}} v'_{2}} 
   914        {Seq\,v_{1}\,v_{2}) \posix_{r_{1}r_{2}} Seq\,v_{1}\,v'_{2}}(C1)$
   915        {Seq\,v_{1}\,v_{2} \posix_{r_{1}r_{2}} Seq\,v_{1}\,v'_{2}}(C1)$
   915 \medskip\\
   916 \medskip\\
   916 		
   917 		
   917 		
   918 		
   918 $\infer{ len |v_{2}| > len |v_{1}|} 
   919 $\infer{ len |v_{2}| > len |v_{1}|} 
   919        {Right \; v_{2} \posix_{r_{1}+r_{2}} Left \; v_{1}}(A1)$ 
   920        {Right \; v_{2} \posix_{r_{1}+r_{2}} Left \; v_{1}}(A1)$ 
   927 
   928 
   928 $\infer{ v_{1} \posix_{r_{1}} v'_{1}} 
   929 $\infer{ v_{1} \posix_{r_{1}} v'_{1}} 
   929        {Left \; v_{1} \posix_{r_{1}+r_{2}} Left \; v'_{1}}(A4)$ 
   930        {Left \; v_{1} \posix_{r_{1}+r_{2}} Left \; v'_{1}}(A4)$ 
   930 \medskip\\
   931 \medskip\\
   931 
   932 
   932  $\infer{|v :: vs| = []} {[] \posix_{r^{\star}} v :: vs}(K1)$ & 
   933  $\infer{|v :: vs| = []} {Stars\,[] \posix_{r^{\star}} Stars\,(v :: vs)}(K1)$ & 
   933  $\infer{|v :: vs| \neq []} { v :: vs \posix_{r^{\star}} []}(K2)$
   934  $\infer{|v :: vs| \neq []} {Stars\,(v :: vs) \posix_{r^{\star}} Stars\,[]}(K2)$
   934 \medskip\\
   935 \medskip\\
   935 	
   936 	
   936 $\infer{ v_{1} \posix_{r} v_{2}} 
   937 $\infer{ v_{1} \posix_{r} v_{2}} 
   937        {v_{1} :: vs_{1} \posix_{r^{\star}} v_{2} :: vs_{2}}(K3)$ & 
   938        {Stars\,(v_{1} :: vs_{1}) \posix_{r^{\star}} Stars\,(v_{2} :: vs_{2})}(K3)$ & 
   938 $\infer{ vs_{1} \posix_{r^{\star}} vs_{2}} 
   939 $\infer{ Stars\,vs_{1} \posix_{r^{\star}} Stars\,vs_{2}} 
   939        {v :: vs_{1} \posix_{r^{\star}} v :: vs_{2}}(K4)$	
   940        {Stars\,(v :: vs_{1}) \posix_{r^{\star}} Stars\,(v :: vs_{2})}(K4)$	
   940 \end{tabular}
   941 \end{tabular}
   941 \end{center}
   942 \end{center}
   942 
   943 
   943   Sulzmann and Lu explicitly refer to the paper \cite{Frisch2004} by Frisch
   944   Sulzmann and Lu explicitly refer to the paper \cite{Frisch2004} by Frisch
   944   and Cardelli from where they have taken their main idea for their
   945   and Cardelli from where they have taken their main idea for their