365
|
1 |
|
|
2 |
theory PDerivs
|
|
3 |
imports Spec
|
|
4 |
begin
|
|
5 |
|
|
6 |
|
|
7 |
|
|
8 |
abbreviation
|
|
9 |
"SEQs rs r \<equiv> (\<Union>r' \<in> rs. {SEQ r' r})"
|
|
10 |
|
|
11 |
lemma SEQs_eq_image:
|
|
12 |
"SEQs rs r = (\<lambda>r'. SEQ r' r) ` rs"
|
|
13 |
by auto
|
|
14 |
|
|
15 |
primrec
|
|
16 |
pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
|
|
17 |
where
|
|
18 |
"pder c ZERO = {}"
|
|
19 |
| "pder c ONE = {}"
|
|
20 |
| "pder c (CHAR d) = (if c = d then {ONE} else {})"
|
|
21 |
| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
|
|
22 |
| "pder c (SEQ r1 r2) =
|
|
23 |
(if nullable r1 then SEQs (pder c r1) r2 \<union> pder c r2 else SEQs (pder c r1) r2)"
|
|
24 |
| "pder c (STAR r) = SEQs (pder c r) (STAR r)"
|
|
25 |
|
|
26 |
primrec
|
|
27 |
pders :: "char list \<Rightarrow> rexp \<Rightarrow> rexp set"
|
|
28 |
where
|
|
29 |
"pders [] r = {r}"
|
|
30 |
| "pders (c # s) r = \<Union> (pders s ` pder c r)"
|
|
31 |
|
|
32 |
abbreviation
|
|
33 |
pder_set :: "char \<Rightarrow> rexp set \<Rightarrow> rexp set"
|
|
34 |
where
|
|
35 |
"pder_set c rs \<equiv> \<Union> (pder c ` rs)"
|
|
36 |
|
|
37 |
abbreviation
|
|
38 |
pders_set :: "char list \<Rightarrow> rexp set \<Rightarrow> rexp set"
|
|
39 |
where
|
|
40 |
"pders_set s rs \<equiv> \<Union> (pders s ` rs)"
|
|
41 |
|
|
42 |
lemma pders_append:
|
|
43 |
"pders (s1 @ s2) r = \<Union> (pders s2 ` pders s1 r)"
|
|
44 |
by (induct s1 arbitrary: r) (simp_all)
|
|
45 |
|
|
46 |
lemma pders_snoc:
|
|
47 |
shows "pders (s @ [c]) r = pder_set c (pders s r)"
|
|
48 |
by (simp add: pders_append)
|
|
49 |
|
|
50 |
lemma pders_simps [simp]:
|
|
51 |
shows "pders s ZERO = (if s = [] then {ZERO} else {})"
|
|
52 |
and "pders s ONE = (if s = [] then {ONE} else {})"
|
|
53 |
and "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
|
|
54 |
by (induct s) (simp_all)
|
|
55 |
|
|
56 |
lemma pders_CHAR:
|
|
57 |
shows "pders s (CHAR c) \<subseteq> {CHAR c, ONE}"
|
|
58 |
by (induct s) (simp_all)
|
|
59 |
|
|
60 |
subsection \<open>Relating left-quotients and partial derivatives\<close>
|
|
61 |
|
|
62 |
lemma Sequ_UNION_distrib:
|
|
63 |
shows "A ;; \<Union>(M ` I) = \<Union>((\<lambda>i. A ;; M i) ` I)"
|
|
64 |
and "\<Union>(M ` I) ;; A = \<Union>((\<lambda>i. M i ;; A) ` I)"
|
|
65 |
by (auto simp add: Sequ_def)
|
|
66 |
|
|
67 |
|
|
68 |
lemma Der_pder:
|
|
69 |
shows "Der c (L r) = \<Union> (L ` pder c r)"
|
|
70 |
by (induct r) (simp_all add: nullable_correctness Sequ_UNION_distrib)
|
|
71 |
|
|
72 |
lemma Ders_pders:
|
|
73 |
shows "Ders s (L r) = \<Union> (L ` pders s r)"
|
|
74 |
proof (induct s arbitrary: r)
|
|
75 |
case (Cons c s)
|
|
76 |
have ih: "\<And>r. Ders s (L r) = \<Union> (L ` pders s r)" by fact
|
|
77 |
have "Ders (c # s) (L r) = Ders s (Der c (L r))" by (simp add: Ders_def Der_def)
|
|
78 |
also have "\<dots> = Ders s (\<Union> (L ` pder c r))" by (simp add: Der_pder)
|
|
79 |
also have "\<dots> = (\<Union>A\<in>(L ` (pder c r)). (Ders s A))"
|
|
80 |
by (auto simp add: Ders_def)
|
|
81 |
also have "\<dots> = \<Union> (L ` (pders_set s (pder c r)))"
|
|
82 |
using ih by auto
|
|
83 |
also have "\<dots> = \<Union> (L ` (pders (c # s) r))" by simp
|
|
84 |
finally show "Ders (c # s) (L r) = \<Union> (L ` pders (c # s) r)" .
|
|
85 |
qed (simp add: Ders_def)
|
|
86 |
|
|
87 |
subsection \<open>Relating derivatives and partial derivatives\<close>
|
|
88 |
|
|
89 |
lemma der_pder:
|
|
90 |
shows "\<Union> (L ` (pder c r)) = L (der c r)"
|
|
91 |
unfolding der_correctness Der_pder by simp
|
|
92 |
|
|
93 |
lemma ders_pders:
|
|
94 |
shows "\<Union> (L ` (pders s r)) = L (ders s r)"
|
|
95 |
unfolding der_correctness ders_correctness Ders_pders by simp
|
|
96 |
|
|
97 |
|
|
98 |
subsection \<open>Finiteness property of partial derivatives\<close>
|
|
99 |
|
|
100 |
definition
|
|
101 |
pders_Set :: "string set \<Rightarrow> rexp \<Rightarrow> rexp set"
|
|
102 |
where
|
|
103 |
"pders_Set A r \<equiv> \<Union>x \<in> A. pders x r"
|
|
104 |
|
|
105 |
lemma pders_Set_subsetI:
|
|
106 |
assumes "\<And>s. s \<in> A \<Longrightarrow> pders s r \<subseteq> C"
|
|
107 |
shows "pders_Set A r \<subseteq> C"
|
|
108 |
using assms unfolding pders_Set_def by (rule UN_least)
|
|
109 |
|
|
110 |
lemma pders_Set_union:
|
|
111 |
shows "pders_Set (A \<union> B) r = (pders_Set A r \<union> pders_Set B r)"
|
|
112 |
by (simp add: pders_Set_def)
|
|
113 |
|
|
114 |
lemma pders_Set_subset:
|
|
115 |
shows "A \<subseteq> B \<Longrightarrow> pders_Set A r \<subseteq> pders_Set B r"
|
|
116 |
by (auto simp add: pders_Set_def)
|
|
117 |
|
|
118 |
definition
|
|
119 |
"UNIV1 \<equiv> UNIV - {[]}"
|
|
120 |
|
|
121 |
lemma pders_Set_ZERO [simp]:
|
|
122 |
shows "pders_Set UNIV1 ZERO = {}"
|
|
123 |
unfolding UNIV1_def pders_Set_def by auto
|
|
124 |
|
|
125 |
lemma pders_Set_ONE [simp]:
|
|
126 |
shows "pders_Set UNIV1 ONE = {}"
|
|
127 |
unfolding UNIV1_def pders_Set_def by (auto split: if_splits)
|
|
128 |
|
|
129 |
lemma pders_Set_CHAR [simp]:
|
|
130 |
shows "pders_Set UNIV1 (CHAR c) = {ONE}"
|
|
131 |
unfolding UNIV1_def pders_Set_def
|
|
132 |
apply(auto)
|
|
133 |
apply(frule rev_subsetD)
|
|
134 |
apply(rule pders_CHAR)
|
|
135 |
apply(simp)
|
|
136 |
apply(case_tac xa)
|
|
137 |
apply(auto split: if_splits)
|
|
138 |
done
|
|
139 |
|
|
140 |
lemma pders_Set_ALT [simp]:
|
|
141 |
shows "pders_Set UNIV1 (ALT r1 r2) = pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2"
|
|
142 |
unfolding UNIV1_def pders_Set_def by auto
|
|
143 |
|
|
144 |
|
|
145 |
text \<open>Non-empty suffixes of a string (needed for the cases of @{const SEQ} and @{const STAR} below)\<close>
|
|
146 |
|
|
147 |
definition
|
|
148 |
"PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
|
|
149 |
|
|
150 |
lemma PSuf_snoc:
|
|
151 |
shows "PSuf (s @ [c]) = (PSuf s) ;; {[c]} \<union> {[c]}"
|
|
152 |
unfolding PSuf_def Sequ_def
|
|
153 |
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
|
|
154 |
|
|
155 |
lemma PSuf_Union:
|
|
156 |
shows "(\<Union>v \<in> PSuf s ;; {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))"
|
|
157 |
by (auto simp add: Sequ_def)
|
|
158 |
|
|
159 |
lemma pders_Set_snoc:
|
|
160 |
shows "pders_Set (PSuf s ;; {[c]}) r = (pder_set c (pders_Set (PSuf s) r))"
|
|
161 |
unfolding pders_Set_def
|
|
162 |
by (simp add: PSuf_Union pders_snoc)
|
|
163 |
|
|
164 |
lemma pders_SEQ:
|
|
165 |
shows "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
|
|
166 |
proof (induct s rule: rev_induct)
|
|
167 |
case (snoc c s)
|
|
168 |
have ih: "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
|
|
169 |
by fact
|
|
170 |
have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))"
|
|
171 |
by (simp add: pders_snoc)
|
|
172 |
also have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2))"
|
|
173 |
using ih by fastforce
|
|
174 |
also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pder_set c (pders_Set (PSuf s) r2)"
|
|
175 |
by (simp)
|
|
176 |
also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pders_Set (PSuf s ;; {[c]}) r2"
|
|
177 |
by (simp add: pders_Set_snoc)
|
|
178 |
also
|
|
179 |
have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2) \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
|
|
180 |
by auto
|
|
181 |
also
|
|
182 |
have "\<dots> \<subseteq> SEQs (pder_set c (pders s r1)) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
|
|
183 |
by (auto simp add: if_splits)
|
|
184 |
also have "\<dots> = SEQs (pders (s @ [c]) r1) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
|
|
185 |
by (simp add: pders_snoc)
|
|
186 |
also have "\<dots> \<subseteq> SEQs (pders (s @ [c]) r1) r2 \<union> pders_Set (PSuf (s @ [c])) r2"
|
|
187 |
unfolding pders_Set_def by (auto simp add: PSuf_snoc)
|
|
188 |
finally show ?case .
|
|
189 |
qed (simp)
|
|
190 |
|
|
191 |
lemma pders_Set_SEQ_aux1:
|
|
192 |
assumes a: "s \<in> UNIV1"
|
|
193 |
shows "pders_Set (PSuf s) r \<subseteq> pders_Set UNIV1 r"
|
|
194 |
using a unfolding UNIV1_def PSuf_def pders_Set_def by auto
|
|
195 |
|
|
196 |
lemma pders_Set_SEQ_aux2:
|
|
197 |
assumes a: "s \<in> UNIV1"
|
|
198 |
shows "SEQs (pders s r1) r2 \<subseteq> SEQs (pders_Set UNIV1 r1) r2"
|
|
199 |
using a unfolding pders_Set_def by auto
|
|
200 |
|
|
201 |
lemma pders_Set_SEQ:
|
|
202 |
shows "pders_Set UNIV1 (SEQ r1 r2) \<subseteq> SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2"
|
|
203 |
apply(rule pders_Set_subsetI)
|
|
204 |
apply(rule subset_trans)
|
|
205 |
apply(rule pders_SEQ)
|
|
206 |
using pders_Set_SEQ_aux1 pders_Set_SEQ_aux2
|
|
207 |
apply auto
|
|
208 |
apply blast
|
|
209 |
done
|
|
210 |
|
|
211 |
lemma pders_STAR:
|
|
212 |
assumes a: "s \<noteq> []"
|
|
213 |
shows "pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)"
|
|
214 |
using a
|
|
215 |
proof (induct s rule: rev_induct)
|
|
216 |
case (snoc c s)
|
|
217 |
have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)" by fact
|
|
218 |
{ assume asm: "s \<noteq> []"
|
|
219 |
have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by (simp add: pders_snoc)
|
|
220 |
also have "\<dots> \<subseteq> pder_set c (SEQs (pders_Set (PSuf s) r) (STAR r))"
|
|
221 |
using ih[OF asm] by fast
|
|
222 |
also have "\<dots> \<subseteq> SEQs (pder_set c (pders_Set (PSuf s) r)) (STAR r) \<union> pder c (STAR r)"
|
|
223 |
by (auto split: if_splits)
|
|
224 |
also have "\<dots> \<subseteq> SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r) \<union> (SEQs (pder c r) (STAR r))"
|
|
225 |
by (simp only: PSuf_snoc pders_Set_snoc pders_Set_union)
|
|
226 |
(auto simp add: pders_Set_def)
|
|
227 |
also have "\<dots> = SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r)"
|
|
228 |
by (auto simp add: PSuf_snoc PSuf_Union pders_snoc pders_Set_def)
|
|
229 |
finally have ?case .
|
|
230 |
}
|
|
231 |
moreover
|
|
232 |
{ assume asm: "s = []"
|
|
233 |
then have ?case by (auto simp add: pders_Set_def pders_snoc PSuf_def)
|
|
234 |
}
|
|
235 |
ultimately show ?case by blast
|
|
236 |
qed (simp)
|
|
237 |
|
|
238 |
lemma pders_Set_STAR:
|
|
239 |
shows "pders_Set UNIV1 (STAR r) \<subseteq> SEQs (pders_Set UNIV1 r) (STAR r)"
|
|
240 |
apply(rule pders_Set_subsetI)
|
|
241 |
apply(rule subset_trans)
|
|
242 |
apply(rule pders_STAR)
|
|
243 |
apply(simp add: UNIV1_def)
|
|
244 |
apply(simp add: UNIV1_def PSuf_def)
|
|
245 |
apply(auto simp add: pders_Set_def)
|
|
246 |
done
|
|
247 |
|
|
248 |
lemma finite_SEQs [simp]:
|
|
249 |
assumes a: "finite A"
|
|
250 |
shows "finite (SEQs A r)"
|
|
251 |
using a by auto
|
|
252 |
|
|
253 |
thm finite.intros
|
|
254 |
|
|
255 |
lemma finite_pders_Set_UNIV1:
|
|
256 |
shows "finite (pders_Set UNIV1 r)"
|
|
257 |
apply(induct r)
|
|
258 |
apply(simp_all add:
|
|
259 |
finite_subset[OF pders_Set_SEQ]
|
|
260 |
finite_subset[OF pders_Set_STAR])
|
|
261 |
done
|
|
262 |
|
|
263 |
lemma pders_Set_UNIV:
|
|
264 |
shows "pders_Set UNIV r = pders [] r \<union> pders_Set UNIV1 r"
|
|
265 |
unfolding UNIV1_def pders_Set_def
|
|
266 |
by blast
|
|
267 |
|
|
268 |
lemma finite_pders_Set_UNIV:
|
|
269 |
shows "finite (pders_Set UNIV r)"
|
|
270 |
unfolding pders_Set_UNIV
|
|
271 |
by (simp add: finite_pders_Set_UNIV1)
|
|
272 |
|
|
273 |
lemma finite_pders_set:
|
|
274 |
shows "finite (pders_Set A r)"
|
|
275 |
by (metis finite_pders_Set_UNIV pders_Set_subset rev_finite_subset subset_UNIV)
|
|
276 |
|
|
277 |
|
|
278 |
text \<open>The following relationship between the alphabetic width of regular expressions
|
|
279 |
(called \<open>awidth\<close> below) and the number of partial derivatives was proved
|
|
280 |
by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck.\<close>
|
|
281 |
|
|
282 |
fun awidth :: "rexp \<Rightarrow> nat" where
|
|
283 |
"awidth ZERO = 0" |
|
|
284 |
"awidth ONE = 0" |
|
|
285 |
"awidth (CHAR a) = 1" |
|
|
286 |
"awidth (ALT r1 r2) = awidth r1 + awidth r2" |
|
|
287 |
"awidth (SEQ r1 r2) = awidth r1 + awidth r2" |
|
|
288 |
"awidth (STAR r1) = awidth r1"
|
|
289 |
|
|
290 |
lemma card_SEQs_pders_Set_le:
|
|
291 |
shows "card (SEQs (pders_Set A r) s) \<le> card (pders_Set A r)"
|
|
292 |
using finite_pders_set
|
|
293 |
unfolding SEQs_eq_image
|
|
294 |
by (rule card_image_le)
|
|
295 |
|
|
296 |
lemma card_pders_set_UNIV1_le_awidth:
|
|
297 |
shows "card (pders_Set UNIV1 r) \<le> awidth r"
|
|
298 |
proof (induction r)
|
|
299 |
case (ALT r1 r2)
|
|
300 |
have "card (pders_Set UNIV1 (ALT r1 r2)) = card (pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2)" by simp
|
|
301 |
also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
|
|
302 |
by(simp add: card_Un_le)
|
|
303 |
also have "\<dots> \<le> awidth (ALT r1 r2)" using ALT.IH by simp
|
|
304 |
finally show ?case .
|
|
305 |
next
|
|
306 |
case (SEQ r1 r2)
|
|
307 |
have "card (pders_Set UNIV1 (SEQ r1 r2)) \<le> card (SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2)"
|
|
308 |
by (simp add: card_mono finite_pders_set pders_Set_SEQ)
|
|
309 |
also have "\<dots> \<le> card (SEQs (pders_Set UNIV1 r1) r2) + card (pders_Set UNIV1 r2)"
|
|
310 |
by (simp add: card_Un_le)
|
|
311 |
also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
|
|
312 |
by (simp add: card_SEQs_pders_Set_le)
|
|
313 |
also have "\<dots> \<le> awidth (SEQ r1 r2)" using SEQ.IH by simp
|
|
314 |
finally show ?case .
|
|
315 |
next
|
|
316 |
case (STAR r)
|
|
317 |
have "card (pders_Set UNIV1 (STAR r)) \<le> card (SEQs (pders_Set UNIV1 r) (STAR r))"
|
|
318 |
by (simp add: card_mono finite_pders_set pders_Set_STAR)
|
|
319 |
also have "\<dots> \<le> card (pders_Set UNIV1 r)" by (rule card_SEQs_pders_Set_le)
|
|
320 |
also have "\<dots> \<le> awidth (STAR r)" by (simp add: STAR.IH)
|
|
321 |
finally show ?case .
|
|
322 |
qed (auto)
|
|
323 |
|
|
324 |
text\<open>Antimirov's Theorem 3.4:\<close>
|
|
325 |
|
|
326 |
theorem card_pders_set_UNIV_le_awidth:
|
|
327 |
shows "card (pders_Set UNIV r) \<le> awidth r + 1"
|
|
328 |
proof -
|
|
329 |
have "card (insert r (pders_Set UNIV1 r)) \<le> Suc (card (pders_Set UNIV1 r))"
|
|
330 |
by(auto simp: card_insert_if[OF finite_pders_Set_UNIV1])
|
|
331 |
also have "\<dots> \<le> Suc (awidth r)" by(simp add: card_pders_set_UNIV1_le_awidth)
|
|
332 |
finally show ?thesis by(simp add: pders_Set_UNIV)
|
|
333 |
qed
|
|
334 |
|
|
335 |
text\<open>Antimirov's Corollary 3.5:\<close>
|
|
336 |
|
|
337 |
corollary card_pders_set_le_awidth:
|
|
338 |
shows "card (pders_Set A r) \<le> awidth r + 1"
|
|
339 |
proof -
|
|
340 |
have "card (pders_Set A r) \<le> card (pders_Set UNIV r)"
|
|
341 |
by (simp add: card_mono finite_pders_set pders_Set_subset)
|
|
342 |
also have "... \<le> awidth r + 1"
|
|
343 |
by (rule card_pders_set_UNIV_le_awidth)
|
|
344 |
finally show "card (pders_Set A r) \<le> awidth r + 1" by simp
|
|
345 |
qed
|
|
346 |
|
|
347 |
(* other result by antimirov *)
|
|
348 |
|
|
349 |
lemma card_pders_awidth:
|
|
350 |
shows "card (pders s r) \<le> awidth r + 1"
|
|
351 |
proof -
|
|
352 |
have "pders s r \<subseteq> pders_Set UNIV r"
|
|
353 |
using pders_Set_def by auto
|
|
354 |
then have "card (pders s r) \<le> card (pders_Set UNIV r)"
|
|
355 |
by (simp add: card_mono finite_pders_set)
|
|
356 |
then show "card (pders s r) \<le> awidth r + 1"
|
|
357 |
using card_pders_set_le_awidth order_trans by blast
|
|
358 |
qed
|
|
359 |
|
|
360 |
|
|
361 |
|
|
362 |
|
|
363 |
|
|
364 |
fun subs :: "rexp \<Rightarrow> rexp set" where
|
|
365 |
"subs ZERO = {ZERO}" |
|
|
366 |
"subs ONE = {ONE}" |
|
|
367 |
"subs (CHAR a) = {CHAR a, ONE}" |
|
|
368 |
"subs (ALT r1 r2) = (subs r1 \<union> subs r2 \<union> {ALT r1 r2})" |
|
|
369 |
"subs (SEQ r1 r2) = (subs r1 \<union> subs r2 \<union> {SEQ r1 r2} \<union> SEQs (subs r1) r2)" |
|
|
370 |
"subs (STAR r1) = (subs r1 \<union> {STAR r1} \<union> SEQs (subs r1) (STAR r1))"
|
|
371 |
|
|
372 |
lemma subs_finite:
|
|
373 |
shows "finite (subs r)"
|
|
374 |
apply(induct r)
|
|
375 |
apply(simp_all)
|
|
376 |
done
|
|
377 |
|
|
378 |
|
|
379 |
|
|
380 |
lemma pders_subs:
|
|
381 |
shows "pders s r \<subseteq> subs r"
|
|
382 |
apply(induct r arbitrary: s)
|
|
383 |
apply(simp)
|
|
384 |
apply(simp)
|
|
385 |
apply(simp add: pders_CHAR)
|
|
386 |
(* SEQ case *)
|
|
387 |
apply(simp)
|
|
388 |
apply(rule subset_trans)
|
|
389 |
apply(rule pders_SEQ)
|
|
390 |
defer
|
|
391 |
(* ALT case *)
|
|
392 |
apply(simp)
|
|
393 |
apply(rule impI)
|
|
394 |
apply(rule conjI)
|
|
395 |
apply blast
|
|
396 |
apply blast
|
|
397 |
(* STAR case *)
|
|
398 |
apply(case_tac s)
|
|
399 |
apply(simp)
|
|
400 |
apply(rule subset_trans)
|
|
401 |
thm pders_STAR
|
|
402 |
apply(rule pders_STAR)
|
|
403 |
apply(simp)
|
|
404 |
apply(auto simp add: pders_Set_def)[1]
|
|
405 |
apply(simp)
|
|
406 |
apply(rule conjI)
|
|
407 |
apply blast
|
|
408 |
apply(auto simp add: pders_Set_def)[1]
|
|
409 |
done
|
|
410 |
|
|
411 |
fun size2 :: "rexp \<Rightarrow> nat" where
|
|
412 |
"size2 ZERO = 1" |
|
|
413 |
"size2 ONE = 1" |
|
|
414 |
"size2 (CHAR c) = 1" |
|
|
415 |
"size2 (ALT r1 r2) = Suc (size2 r1 + size2 r2)" |
|
|
416 |
"size2 (SEQ r1 r2) = Suc (size2 r1 + size2 r2)" |
|
|
417 |
"size2 (STAR r1) = Suc (size2 r1)"
|
|
418 |
|
|
419 |
|
|
420 |
lemma size_rexp:
|
|
421 |
fixes r :: rexp
|
|
422 |
shows "1 \<le> size2 r"
|
|
423 |
apply(induct r)
|
|
424 |
apply(simp)
|
|
425 |
apply(simp_all)
|
|
426 |
done
|
|
427 |
|
|
428 |
lemma subs_card:
|
|
429 |
shows "card (subs r) \<le> Suc (size2 r + size2 r)"
|
|
430 |
apply(induct r)
|
|
431 |
apply(auto)
|
|
432 |
apply(subst card_insert)
|
|
433 |
apply(simp add: subs_finite)
|
|
434 |
apply(simp add: subs_finite)
|
|
435 |
oops
|
|
436 |
|
|
437 |
lemma subs_size2:
|
|
438 |
shows "\<forall>r1 \<in> subs r. size2 r1 \<le> Suc (size2 r * size2 r)"
|
|
439 |
apply(induct r)
|
|
440 |
apply(simp)
|
|
441 |
apply(simp)
|
|
442 |
apply(simp)
|
|
443 |
(* SEQ case *)
|
|
444 |
apply(simp)
|
|
445 |
apply(auto)[1]
|
|
446 |
apply (smt Suc_n_not_le_n add.commute distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1)
|
|
447 |
apply (smt Suc_le_mono Suc_n_not_le_n le_trans nat_le_linear power2_eq_square power2_sum semiring_normalization_rules(23) trans_le_add2)
|
|
448 |
apply (smt Groups.add_ac(3) Suc_n_not_le_n distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1)
|
|
449 |
(* ALT case *)
|
|
450 |
apply(simp)
|
|
451 |
apply(auto)[1]
|
|
452 |
apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n le_add2 linear order_trans power2_eq_square power2_sum)
|
|
453 |
apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n left_add_mult_distrib linear mult.commute order.trans trans_le_add1)
|
|
454 |
(* STAR case *)
|
|
455 |
apply(auto)[1]
|
|
456 |
apply(drule_tac x="r'" in bspec)
|
|
457 |
apply(simp)
|
|
458 |
apply(rule le_trans)
|
|
459 |
apply(assumption)
|
|
460 |
apply(simp)
|
|
461 |
using size_rexp
|
|
462 |
apply(simp)
|
|
463 |
done
|
|
464 |
|
|
465 |
lemma awidth_size:
|
|
466 |
shows "awidth r \<le> size2 r"
|
|
467 |
apply(induct r)
|
|
468 |
apply(simp_all)
|
|
469 |
done
|
|
470 |
|
|
471 |
lemma Sum1:
|
|
472 |
fixes A B :: "nat set"
|
|
473 |
assumes "A \<subseteq> B" "finite A" "finite B"
|
|
474 |
shows "\<Sum>A \<le> \<Sum>B"
|
|
475 |
using assms
|
|
476 |
by (simp add: sum_mono2)
|
|
477 |
|
|
478 |
lemma Sum2:
|
|
479 |
fixes A :: "rexp set"
|
|
480 |
and f g :: "rexp \<Rightarrow> nat"
|
|
481 |
assumes "finite A" "\<forall>x \<in> A. f x \<le> g x"
|
|
482 |
shows "sum f A \<le> sum g A"
|
|
483 |
using assms
|
|
484 |
apply(induct A)
|
|
485 |
apply(auto)
|
|
486 |
done
|
|
487 |
|
|
488 |
|
|
489 |
|
|
490 |
|
|
491 |
|
|
492 |
lemma pders_max_size:
|
|
493 |
shows "(sum size2 (pders s r)) \<le> (Suc (size2 r)) ^ 3"
|
|
494 |
proof -
|
|
495 |
have "(sum size2 (pders s r)) \<le> sum (\<lambda>_. Suc (size2 r * size2 r)) (pders s r)"
|
|
496 |
apply(rule_tac Sum2)
|
|
497 |
apply (meson pders_subs rev_finite_subset subs_finite)
|
|
498 |
using pders_subs subs_size2 by blast
|
|
499 |
also have "... \<le> (Suc (size2 r * size2 r)) * (sum (\<lambda>_. 1) (pders s r))"
|
|
500 |
by simp
|
|
501 |
also have "... \<le> (Suc (size2 r * size2 r)) * card (pders s r)"
|
|
502 |
by simp
|
|
503 |
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (awidth r))"
|
|
504 |
using Suc_eq_plus1 card_pders_awidth mult_le_mono2 by presburger
|
|
505 |
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (size2 r))"
|
|
506 |
using Suc_le_mono awidth_size mult_le_mono2 by presburger
|
|
507 |
also have "... \<le> (Suc (size2 r)) ^ 3"
|
|
508 |
by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp)
|
|
509 |
finally show ?thesis .
|
|
510 |
qed
|
|
511 |
|
|
512 |
lemma pders_Set_max_size:
|
|
513 |
shows "(sum size2 (pders_Set A r)) \<le> (Suc (size2 r)) ^ 3"
|
|
514 |
proof -
|
|
515 |
have "(sum size2 (pders_Set A r)) \<le> sum (\<lambda>_. Suc (size2 r * size2 r)) (pders_Set A r)"
|
|
516 |
apply(rule_tac Sum2)
|
|
517 |
apply (simp add: finite_pders_set)
|
|
518 |
by (meson pders_Set_subsetI pders_subs subs_size2 subsetD)
|
|
519 |
also have "... \<le> (Suc (size2 r * size2 r)) * (sum (\<lambda>_. 1) (pders_Set A r))"
|
|
520 |
by simp
|
|
521 |
also have "... \<le> (Suc (size2 r * size2 r)) * card (pders_Set A r)"
|
|
522 |
by simp
|
|
523 |
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (awidth r))"
|
|
524 |
using Suc_eq_plus1 card_pders_set_le_awidth mult_le_mono2 by presburger
|
|
525 |
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (size2 r))"
|
|
526 |
using Suc_le_mono awidth_size mult_le_mono2 by presburger
|
|
527 |
also have "... \<le> (Suc (size2 r)) ^ 3"
|
|
528 |
by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp)
|
|
529 |
finally show ?thesis .
|
|
530 |
qed
|
|
531 |
|
|
532 |
fun height :: "rexp \<Rightarrow> nat" where
|
|
533 |
"height ZERO = 1" |
|
|
534 |
"height ONE = 1" |
|
|
535 |
"height (CHAR c) = 1" |
|
|
536 |
"height (ALT r1 r2) = Suc (max (height r1) (height r2))" |
|
|
537 |
"height (SEQ r1 r2) = Suc (max (height r1) (height r2))" |
|
|
538 |
"height (STAR r1) = Suc (height r1)"
|
|
539 |
|
|
540 |
lemma height_size2:
|
|
541 |
shows "height r \<le> size2 r"
|
|
542 |
apply(induct r)
|
|
543 |
apply(simp_all)
|
|
544 |
done
|
|
545 |
|
|
546 |
lemma height_rexp:
|
|
547 |
fixes r :: rexp
|
|
548 |
shows "1 \<le> height r"
|
|
549 |
apply(induct r)
|
|
550 |
apply(simp_all)
|
|
551 |
done
|
|
552 |
|
|
553 |
lemma subs_height:
|
|
554 |
shows "\<forall>r1 \<in> subs r. height r1 \<le> Suc (height r)"
|
|
555 |
apply(induct r)
|
|
556 |
apply(auto)+
|
|
557 |
done
|
|
558 |
|
|
559 |
|
|
560 |
|
|
561 |
end |