14
|
1 |
theory MyFirst
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
datatype 'a list = Nil | Cons 'a "'a list"
|
|
6 |
|
|
7 |
fun app :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
|
|
8 |
"app Nil ys = ys" |
|
|
9 |
"app (Cons x xs) ys = Cons x (app xs ys)"
|
|
10 |
|
|
11 |
fun rev :: "'a list \<Rightarrow> 'a list" where
|
|
12 |
"rev Nil = Nil" |
|
|
13 |
"rev (Cons x xs) = app (rev xs) (Cons x Nil)"
|
|
14 |
|
|
15 |
value "rev(Cons True (Cons False Nil))"
|
|
16 |
|
|
17 |
value "1 + (2::nat)"
|
|
18 |
value "1 + (2::int)"
|
|
19 |
value "1 - (2::nat)"
|
|
20 |
value "1 - (2::int)"
|
|
21 |
|
|
22 |
lemma app_Nil2 [simp]: "app xs Nil = xs"
|
|
23 |
apply(induction xs)
|
|
24 |
apply(auto)
|
|
25 |
done
|
|
26 |
|
|
27 |
lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)"
|
|
28 |
apply(induction xs)
|
|
29 |
apply(auto)
|
|
30 |
done
|
|
31 |
|
|
32 |
lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"
|
|
33 |
apply (induction xs)
|
|
34 |
apply (auto)
|
|
35 |
done
|
|
36 |
|
|
37 |
theorem rev_rev [simp]: "rev(rev xs) = xs"
|
|
38 |
apply (induction xs)
|
|
39 |
apply (auto)
|
|
40 |
done
|
|
41 |
|
|
42 |
fun add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
|
|
43 |
"add 0 n = n" |
|
|
44 |
"add (Suc m) n = Suc(add m n)"
|
|
45 |
|
|
46 |
lemma add_02: "add m 0 = m"
|
|
47 |
apply(induction m)
|
|
48 |
apply(auto)
|
|
49 |
done
|
|
50 |
|
|
51 |
value "add 2 3"
|
|
52 |
|
16
|
53 |
(**commutative-associative**)
|
14
|
54 |
lemma add_04: "add m (add n k) = add k (add m n)"
|
|
55 |
apply(induct)
|
|
56 |
apply(auto)
|
|
57 |
oops
|
|
58 |
|
|
59 |
fun dub :: "nat \<Rightarrow> nat" where
|
|
60 |
"dub 0 = 0" |
|
|
61 |
"dub m = add m m"
|
|
62 |
|
|
63 |
lemma dub_01: "dub 0 = 0"
|
|
64 |
apply(induct)
|
|
65 |
apply(auto)
|
|
66 |
done
|
|
67 |
|
|
68 |
lemma dub_02: "dub m = add m m"
|
|
69 |
apply(induction m)
|
|
70 |
apply(auto)
|
|
71 |
done
|
|
72 |
|
|
73 |
value "dub 2"
|
|
74 |
|
|
75 |
fun trip :: "nat \<Rightarrow> nat" where
|
|
76 |
"trip 0 = 0" |
|
|
77 |
"trip m = add m (add m m)"
|
|
78 |
|
|
79 |
lemma trip_01: "trip 0 = 0"
|
|
80 |
apply(induct)
|
|
81 |
apply(auto)
|
|
82 |
done
|
|
83 |
|
|
84 |
lemma trip_02: "trip m = add m (add m m)"
|
|
85 |
apply(induction m)
|
|
86 |
apply(auto)
|
|
87 |
done
|
|
88 |
|
|
89 |
value "trip 1"
|
|
90 |
value "trip 2"
|
|
91 |
|
|
92 |
fun mull :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
|
|
93 |
"mull 0 0 = 0" |
|
|
94 |
"mull m 0 = 0" |
|
15
|
95 |
(**"mull m 1 = m" | **)
|
17
|
96 |
(**"mull m (1::nat) = m" | **)
|
|
97 |
(**"mull m (suc(0)) = m" | **)
|
|
98 |
"mull m n = mull m (n-(1::nat))"
|
14
|
99 |
|
17
|
100 |
(**Define a function that counts the
|
|
101 |
number of occurrences of an element in a list **)
|
14
|
102 |
(**
|
|
103 |
fun count :: "'a\<Rightarrow>'a list\<Rightarrow>nat" where
|
|
104 |
"count "
|
|
105 |
**)
|
|
106 |
|
19
|
107 |
fun sum :: "nat \<Rightarrow> nat" where
|
|
108 |
"sum n = 0 + \<dots> + n"
|
|
109 |
(* prove n = n * (n + 1) div 2 *)
|
14
|
110 |
|
|
111 |
|
|
112 |
|
|
113 |
|
|
114 |
|
|
115 |
|
|
116 |
|
|
117 |
|
|
118 |
|
19
|
119 |
|
|
120 |
|