367
|
1 |
(*<*)
|
|
2 |
theory Paper
|
|
3 |
imports
|
|
4 |
"../Lexer"
|
|
5 |
"../Simplifying"
|
|
6 |
"../Positions"
|
|
7 |
|
|
8 |
"../SizeBound"
|
|
9 |
"HOL-Library.LaTeXsugar"
|
|
10 |
begin
|
|
11 |
|
|
12 |
lemma Suc_0_fold:
|
|
13 |
"Suc 0 = 1"
|
|
14 |
by simp
|
|
15 |
|
|
16 |
|
|
17 |
|
|
18 |
declare [[show_question_marks = false]]
|
|
19 |
|
|
20 |
syntax (latex output)
|
|
21 |
"_Collect" :: "pttrn => bool => 'a set" ("(1{_ \<^latex>\<open>\\mbox{\\boldmath$\\mid$}\<close> _})")
|
|
22 |
"_CollectIn" :: "pttrn => 'a set => bool => 'a set" ("(1{_ \<in> _ |e _})")
|
|
23 |
|
|
24 |
syntax
|
|
25 |
"_Not_Ex" :: "idts \<Rightarrow> bool \<Rightarrow> bool" ("(3\<nexists>_.a./ _)" [0, 10] 10)
|
|
26 |
"_Not_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool" ("(3\<nexists>!_.a./ _)" [0, 10] 10)
|
|
27 |
|
|
28 |
|
|
29 |
abbreviation
|
|
30 |
"der_syn r c \<equiv> der c r"
|
|
31 |
|
|
32 |
abbreviation
|
|
33 |
"ders_syn r s \<equiv> ders s r"
|
|
34 |
|
|
35 |
abbreviation
|
|
36 |
"bder_syn r c \<equiv> bder c r"
|
|
37 |
|
|
38 |
abbreviation
|
|
39 |
"bders_syn r s \<equiv> bders r s"
|
|
40 |
|
|
41 |
|
|
42 |
abbreviation
|
|
43 |
"nprec v1 v2 \<equiv> \<not>(v1 :\<sqsubset>val v2)"
|
|
44 |
|
|
45 |
|
|
46 |
|
|
47 |
|
|
48 |
notation (latex output)
|
|
49 |
If ("(\<^latex>\<open>\\textrm{\<close>if\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textrm{\<close>then\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textrm{\<close>else\<^latex>\<open>}\<close> (_))" 10) and
|
|
50 |
Cons ("_\<^latex>\<open>\\mbox{$\\,$}\<close>::\<^latex>\<open>\\mbox{$\\,$}\<close>_" [75,73] 73) and
|
|
51 |
|
|
52 |
ZERO ("\<^bold>0" 81) and
|
|
53 |
ONE ("\<^bold>1" 81) and
|
|
54 |
CH ("_" [1000] 80) and
|
|
55 |
ALT ("_ + _" [77,77] 78) and
|
|
56 |
SEQ ("_ \<cdot> _" [77,77] 78) and
|
|
57 |
STAR ("_\<^sup>\<star>" [79] 78) and
|
|
58 |
|
|
59 |
val.Void ("Empty" 78) and
|
|
60 |
val.Char ("Char _" [1000] 78) and
|
|
61 |
val.Left ("Left _" [79] 78) and
|
|
62 |
val.Right ("Right _" [1000] 78) and
|
|
63 |
val.Seq ("Seq _ _" [79,79] 78) and
|
|
64 |
val.Stars ("Stars _" [79] 78) and
|
|
65 |
|
|
66 |
L ("L'(_')" [10] 78) and
|
|
67 |
LV ("LV _ _" [80,73] 78) and
|
|
68 |
der_syn ("_\\_" [79, 1000] 76) and
|
|
69 |
ders_syn ("_\\_" [79, 1000] 76) and
|
|
70 |
flat ("|_|" [75] 74) and
|
|
71 |
flats ("|_|" [72] 74) and
|
|
72 |
Sequ ("_ @ _" [78,77] 63) and
|
|
73 |
injval ("inj _ _ _" [79,77,79] 76) and
|
|
74 |
mkeps ("mkeps _" [79] 76) and
|
|
75 |
length ("len _" [73] 73) and
|
|
76 |
intlen ("len _" [73] 73) and
|
|
77 |
set ("_" [73] 73) and
|
|
78 |
|
|
79 |
Prf ("_ : _" [75,75] 75) and
|
|
80 |
Posix ("'(_, _') \<rightarrow> _" [63,75,75] 75) and
|
|
81 |
|
|
82 |
lexer ("lexer _ _" [78,78] 77) and
|
|
83 |
F_RIGHT ("F\<^bsub>Right\<^esub> _") and
|
|
84 |
F_LEFT ("F\<^bsub>Left\<^esub> _") and
|
|
85 |
F_ALT ("F\<^bsub>Alt\<^esub> _ _") and
|
|
86 |
F_SEQ1 ("F\<^bsub>Seq1\<^esub> _ _") and
|
|
87 |
F_SEQ2 ("F\<^bsub>Seq2\<^esub> _ _") and
|
|
88 |
F_SEQ ("F\<^bsub>Seq\<^esub> _ _") and
|
|
89 |
simp_SEQ ("simp\<^bsub>Seq\<^esub> _ _" [1000, 1000] 1) and
|
|
90 |
simp_ALT ("simp\<^bsub>Alt\<^esub> _ _" [1000, 1000] 1) and
|
|
91 |
slexer ("lexer\<^sup>+" 1000) and
|
|
92 |
|
|
93 |
at ("_\<^latex>\<open>\\mbox{$\\downharpoonleft$}\<close>\<^bsub>_\<^esub>") and
|
|
94 |
lex_list ("_ \<prec>\<^bsub>lex\<^esub> _") and
|
|
95 |
PosOrd ("_ \<prec>\<^bsub>_\<^esub> _" [77,77,77] 77) and
|
|
96 |
PosOrd_ex ("_ \<prec> _" [77,77] 77) and
|
|
97 |
PosOrd_ex_eq ("_ \<^latex>\<open>\\mbox{$\\preccurlyeq$}\<close> _" [77,77] 77) and
|
|
98 |
pflat_len ("\<parallel>_\<parallel>\<^bsub>_\<^esub>") and
|
|
99 |
nprec ("_ \<^latex>\<open>\\mbox{$\\not\\prec$}\<close> _" [77,77] 77) and
|
|
100 |
|
|
101 |
bder_syn ("_\<^latex>\<open>\\mbox{$\\bbslash$}\<close>_" [79, 1000] 76) and
|
|
102 |
bders_syn ("_\<^latex>\<open>\\mbox{$\\bbslash$}\<close>_" [79, 1000] 76) and
|
|
103 |
intern ("_\<^latex>\<open>\\mbox{$^\\uparrow$}\<close>" [900] 80) and
|
|
104 |
erase ("_\<^latex>\<open>\\mbox{$^\\downarrow$}\<close>" [1000] 74) and
|
|
105 |
bnullable ("nullable\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
|
|
106 |
bmkeps ("mkeps\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
|
|
107 |
blexer ("lexer\<^latex>\<open>\\mbox{$_b$}\<close> _ _" [77, 77] 80) and
|
|
108 |
code ("code _" [79] 74) and
|
|
109 |
|
|
110 |
DUMMY ("\<^latex>\<open>\\underline{\\hspace{2mm}}\<close>")
|
|
111 |
|
|
112 |
|
|
113 |
definition
|
|
114 |
"match r s \<equiv> nullable (ders s r)"
|
|
115 |
|
|
116 |
|
|
117 |
lemma LV_STAR_ONE_empty:
|
|
118 |
shows "LV (STAR ONE) [] = {Stars []}"
|
|
119 |
by(auto simp add: LV_def elim: Prf.cases intro: Prf.intros)
|
|
120 |
|
|
121 |
|
|
122 |
|
|
123 |
(*
|
|
124 |
comments not implemented
|
|
125 |
|
|
126 |
p9. The condition "not exists s3 s4..." appears often enough (in particular in
|
|
127 |
the proof of Lemma 3) to warrant a definition.
|
|
128 |
|
|
129 |
*)
|
|
130 |
|
|
131 |
|
|
132 |
(*>*)
|
|
133 |
|
371
|
134 |
section\<open>Core of the proof\<close>
|
367
|
135 |
text \<open>
|
371
|
136 |
This paper builds on previous work by Ausaf and Urban using
|
367
|
137 |
regular expression'd bit-coded derivatives to do lexing that
|
371
|
138 |
is both fast and satisfies the POSIX specification.
|
367
|
139 |
In their work, a bit-coded algorithm introduced by Sulzmann and Lu
|
|
140 |
was formally verified in Isabelle, by a very clever use of
|
|
141 |
flex function and retrieve to carefully mimic the way a value is
|
|
142 |
built up by the injection funciton.
|
|
143 |
|
|
144 |
In the previous work, Ausaf and Urban established the below equality:
|
|
145 |
\begin{lemma}
|
371
|
146 |
@{thm [mode=IfThen] MAIN_decode}
|
|
147 |
\end{lemma}
|
|
148 |
|
|
149 |
This lemma establishes a link with the lexer without bit-codes.
|
|
150 |
|
|
151 |
With it we get the correctness of bit-coded algorithm.
|
|
152 |
\begin{lemma}
|
|
153 |
@{thm [mode=IfThen] blexer_correctness}
|
367
|
154 |
\end{lemma}
|
|
155 |
|
371
|
156 |
However what is not certain is whether we can add simplification
|
|
157 |
to the bit-coded algorithm, without breaking the correct lexing output.
|
372
|
158 |
|
|
159 |
|
|
160 |
The reason that we do need to add a simplification phase
|
|
161 |
after each derivative step of $\textit{blexer}$ is
|
|
162 |
because it produces intermediate
|
|
163 |
regular expressions that can grow exponentially.
|
|
164 |
For example, the regular expression $(a+aa)^*$ after taking
|
|
165 |
derivative against just 10 $a$s will have size 8192.
|
|
166 |
|
|
167 |
%TODO: add figure for this?
|
|
168 |
|
376
|
169 |
|
|
170 |
Therefore, we insert a simplification phase
|
|
171 |
after each derivation step, as defined below:
|
372
|
172 |
\begin{lemma}
|
|
173 |
@{thm blexer_simp_def}
|
|
174 |
\end{lemma}
|
|
175 |
|
376
|
176 |
The simplification function is given as follows:
|
372
|
177 |
|
|
178 |
\begin{center}
|
|
179 |
\begin{tabular}{lcl}
|
|
180 |
@{thm (lhs) bsimp.simps(1)[of "bs" "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bsimp.simps(1)[of "bs" "r\<^sub>1" "r\<^sub>2"]}\\
|
|
181 |
@{thm (lhs) bsimp.simps(2)} & $\dn$ & @{thm (rhs) bsimp.simps(2)}\\
|
|
182 |
@{thm (lhs) bsimp.simps(3)} & $\dn$ & @{thm (rhs) bsimp.simps(3)}\\
|
376
|
183 |
|
|
184 |
\end{tabular}
|
|
185 |
\end{center}
|
|
186 |
|
|
187 |
And the two helper functions are:
|
|
188 |
\begin{center}
|
|
189 |
\begin{tabular}{lcl}
|
|
190 |
@{thm (lhs) bsimp_AALTs.simps(2)[of "bs\<^sub>1" "r" ]} & $\dn$ & @{thm (rhs) bsimp.simps(1)[of "bs\<^sub>1" "r" ]}\\
|
|
191 |
@{thm (lhs) bsimp_AALTs.simps(2)} & $\dn$ & @{thm (rhs) bsimp.simps(2)}\\
|
|
192 |
@{thm (lhs) bsimp_AALTs.simps(3)} & $\dn$ & @{thm (rhs) bsimp.simps(3)}\\
|
|
193 |
|
372
|
194 |
\end{tabular}
|
|
195 |
\end{center}
|
|
196 |
|
|
197 |
|
371
|
198 |
This might sound trivial in the case of producing a YES/NO answer,
|
|
199 |
but once we require a lexing output to be produced (which is required
|
|
200 |
in applications like compiler front-end, malicious attack domain extraction,
|
|
201 |
etc.), it is not straightforward if we still extract what is needed according
|
|
202 |
to the POSIX standard.
|
|
203 |
|
372
|
204 |
|
|
205 |
|
|
206 |
|
|
207 |
|
371
|
208 |
By simplification, we mean specifically the following rules:
|
|
209 |
|
|
210 |
\begin{center}
|
|
211 |
\begin{tabular}{lcl}
|
|
212 |
@{thm[mode=Axiom] rrewrite.intros(1)[of "bs" "r\<^sub>2"]}\\
|
|
213 |
@{thm[mode=Axiom] rrewrite.intros(2)[of "bs" "r\<^sub>1"]}\\
|
|
214 |
@{thm[mode=Axiom] rrewrite.intros(3)[of "bs" "bs\<^sub>1" "r\<^sub>1"]}\\
|
|
215 |
@{thm[mode=Rule] rrewrite.intros(4)[of "r\<^sub>1" "r\<^sub>2" "bs" "r\<^sub>3"]}\\
|
372
|
216 |
@{thm[mode=Rule] rrewrite.intros(5)[of "r\<^sub>3" "r\<^sub>4" "bs" "r\<^sub>1"]}\\
|
|
217 |
@{thm[mode=Rule] rrewrite.intros(6)[of "r" "r'" "bs" "rs\<^sub>1" "rs\<^sub>2"]}\\
|
|
218 |
@{thm[mode=Axiom] rrewrite.intros(7)[of "bs" "rs\<^sub>a" "rs\<^sub>b"]}\\
|
|
219 |
@{thm[mode=Axiom] rrewrite.intros(8)[of "bs" "rs\<^sub>a" "bs\<^sub>1" "rs\<^sub>1" "rs\<^sub>b"]}\\
|
376
|
220 |
@{thm[mode=Axiom] rrewrite.intros(9)[of "bs" "bs\<^sub>1" "rs"]}\\
|
|
221 |
@{thm[mode=Axiom] rrewrite.intros(10)[of "bs" ]}\\
|
|
222 |
@{thm[mode=Axiom] rrewrite.intros(11)[of "bs" "r\<^sub>1"]}\\
|
|
223 |
@{thm[mode=Rule] rrewrite.intros(12)[of "a\<^sub>1" "a\<^sub>2" "bs" "rs\<^sub>a" "rs\<^sub>b" "rs\<^sub>c"]}\\
|
371
|
224 |
|
|
225 |
\end{tabular}
|
|
226 |
\end{center}
|
|
227 |
|
|
228 |
|
|
229 |
And these can be made compact by the following simplification function:
|
|
230 |
|
|
231 |
where the function $\mathit{bsimp_AALTs}$
|
|
232 |
|
|
233 |
The core idea of the proof is that two regular expressions,
|
|
234 |
if "isomorphic" up to a finite number of rewrite steps, will
|
|
235 |
remain "isomorphic" when we take the same sequence of
|
|
236 |
derivatives on both of them.
|
|
237 |
This can be expressed by the following rewrite relation lemma:
|
|
238 |
\begin{lemma}
|
|
239 |
@{thm [mode=IfThen] central}
|
|
240 |
\end{lemma}
|
|
241 |
|
|
242 |
This isomorphic relation implies a property that leads to the
|
|
243 |
correctness result:
|
|
244 |
if two (nullable) regular expressions are "rewritable" in many steps
|
|
245 |
from one another,
|
372
|
246 |
then a call to function $\textit{bmkeps}$ gives the same
|
371
|
247 |
bit-sequence :
|
|
248 |
\begin{lemma}
|
|
249 |
@{thm [mode=IfThen] rewrites_bmkeps}
|
|
250 |
\end{lemma}
|
|
251 |
|
|
252 |
Given the same bit-sequence, the decode function
|
|
253 |
will give out the same value, which is the output
|
|
254 |
of both lexers:
|
|
255 |
\begin{lemma}
|
|
256 |
@{thm blexer_def}
|
|
257 |
\end{lemma}
|
|
258 |
|
|
259 |
\begin{lemma}
|
|
260 |
@{thm blexer_simp_def}
|
|
261 |
\end{lemma}
|
|
262 |
|
|
263 |
And that yields the correctness result:
|
|
264 |
\begin{lemma}
|
|
265 |
@{thm blexersimp_correctness}
|
|
266 |
\end{lemma}
|
|
267 |
|
376
|
268 |
The nice thing about the aove
|
|
269 |
\<close>
|
371
|
270 |
|
376
|
271 |
|
371
|
272 |
|
|
273 |
section \<open>Introduction\<close>
|
|
274 |
|
|
275 |
|
|
276 |
text \<open>
|
|
277 |
|
367
|
278 |
|
|
279 |
Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em
|
|
280 |
derivative} @{term "der c r"} of a regular expression \<open>r\<close> w.r.t.\
|
|
281 |
a character~\<open>c\<close>, and showed that it gave a simple solution to the
|
|
282 |
problem of matching a string @{term s} with a regular expression @{term
|
|
283 |
r}: if the derivative of @{term r} w.r.t.\ (in succession) all the
|
|
284 |
characters of the string matches the empty string, then @{term r}
|
|
285 |
matches @{term s} (and {\em vice versa}). The derivative has the
|
|
286 |
property (which may almost be regarded as its specification) that, for
|
|
287 |
every string @{term s} and regular expression @{term r} and character
|
|
288 |
@{term c}, one has @{term "cs \<in> L(r)"} if and only if \mbox{@{term "s \<in> L(der c r)"}}.
|
|
289 |
The beauty of Brzozowski's derivatives is that
|
|
290 |
they are neatly expressible in any functional language, and easily
|
|
291 |
definable and reasoned about in theorem provers---the definitions just
|
|
292 |
consist of inductive datatypes and simple recursive functions. A
|
|
293 |
mechanised correctness proof of Brzozowski's matcher in for example HOL4
|
|
294 |
has been mentioned by Owens and Slind~\cite{Owens2008}. Another one in
|
|
295 |
Isabelle/HOL is part of the work by Krauss and Nipkow \cite{Krauss2011}.
|
|
296 |
And another one in Coq is given by Coquand and Siles \cite{Coquand2012}.
|
|
297 |
|
|
298 |
If a regular expression matches a string, then in general there is more
|
|
299 |
than one way of how the string is matched. There are two commonly used
|
|
300 |
disambiguation strategies to generate a unique answer: one is called
|
|
301 |
GREEDY matching \cite{Frisch2004} and the other is POSIX
|
|
302 |
matching~\cite{POSIX,Kuklewicz,OkuiSuzuki2010,Sulzmann2014,Vansummeren2006}.
|
|
303 |
For example consider the string @{term xy} and the regular expression
|
|
304 |
\mbox{@{term "STAR (ALT (ALT x y) xy)"}}. Either the string can be
|
|
305 |
matched in two `iterations' by the single letter-regular expressions
|
|
306 |
@{term x} and @{term y}, or directly in one iteration by @{term xy}. The
|
|
307 |
first case corresponds to GREEDY matching, which first matches with the
|
|
308 |
left-most symbol and only matches the next symbol in case of a mismatch
|
|
309 |
(this is greedy in the sense of preferring instant gratification to
|
|
310 |
delayed repletion). The second case is POSIX matching, which prefers the
|
|
311 |
longest match.
|
|
312 |
|
|
313 |
In the context of lexing, where an input string needs to be split up
|
|
314 |
into a sequence of tokens, POSIX is the more natural disambiguation
|
|
315 |
strategy for what programmers consider basic syntactic building blocks
|
|
316 |
in their programs. These building blocks are often specified by some
|
|
317 |
regular expressions, say \<open>r\<^bsub>key\<^esub>\<close> and \<open>r\<^bsub>id\<^esub>\<close> for recognising keywords and identifiers,
|
|
318 |
respectively. There are a few underlying (informal) rules behind
|
|
319 |
tokenising a string in a POSIX \cite{POSIX} fashion:
|
|
320 |
|
|
321 |
\begin{itemize}
|
|
322 |
\item[$\bullet$] \emph{The Longest Match Rule} (or \emph{``{M}aximal {M}unch {R}ule''}):
|
|
323 |
The longest initial substring matched by any regular expression is taken as
|
|
324 |
next token.\smallskip
|
|
325 |
|
|
326 |
\item[$\bullet$] \emph{Priority Rule:}
|
|
327 |
For a particular longest initial substring, the first (leftmost) regular expression
|
|
328 |
that can match determines the token.\smallskip
|
|
329 |
|
|
330 |
\item[$\bullet$] \emph{Star Rule:} A subexpression repeated by ${}^\star$ shall
|
|
331 |
not match an empty string unless this is the only match for the repetition.\smallskip
|
|
332 |
|
|
333 |
\item[$\bullet$] \emph{Empty String Rule:} An empty string shall be considered to
|
|
334 |
be longer than no match at all.
|
|
335 |
\end{itemize}
|
|
336 |
|
|
337 |
\noindent Consider for example a regular expression \<open>r\<^bsub>key\<^esub>\<close> for recognising keywords such as \<open>if\<close>,
|
|
338 |
\<open>then\<close> and so on; and \<open>r\<^bsub>id\<^esub>\<close>
|
|
339 |
recognising identifiers (say, a single character followed by
|
|
340 |
characters or numbers). Then we can form the regular expression
|
|
341 |
\<open>(r\<^bsub>key\<^esub> + r\<^bsub>id\<^esub>)\<^sup>\<star>\<close>
|
|
342 |
and use POSIX matching to tokenise strings, say \<open>iffoo\<close> and
|
|
343 |
\<open>if\<close>. For \<open>iffoo\<close> we obtain by the Longest Match Rule
|
|
344 |
a single identifier token, not a keyword followed by an
|
|
345 |
identifier. For \<open>if\<close> we obtain by the Priority Rule a keyword
|
|
346 |
token, not an identifier token---even if \<open>r\<^bsub>id\<^esub>\<close>
|
|
347 |
matches also. By the Star Rule we know \<open>(r\<^bsub>key\<^esub> +
|
|
348 |
r\<^bsub>id\<^esub>)\<^sup>\<star>\<close> matches \<open>iffoo\<close>,
|
|
349 |
respectively \<open>if\<close>, in exactly one `iteration' of the star. The
|
|
350 |
Empty String Rule is for cases where, for example, the regular expression
|
|
351 |
\<open>(a\<^sup>\<star>)\<^sup>\<star>\<close> matches against the
|
|
352 |
string \<open>bc\<close>. Then the longest initial matched substring is the
|
|
353 |
empty string, which is matched by both the whole regular expression
|
|
354 |
and the parenthesised subexpression.
|
|
355 |
|
|
356 |
|
|
357 |
One limitation of Brzozowski's matcher is that it only generates a
|
|
358 |
YES/NO answer for whether a string is being matched by a regular
|
|
359 |
expression. Sulzmann and Lu~\cite{Sulzmann2014} extended this matcher
|
|
360 |
to allow generation not just of a YES/NO answer but of an actual
|
|
361 |
matching, called a [lexical] {\em value}. Assuming a regular
|
|
362 |
expression matches a string, values encode the information of
|
|
363 |
\emph{how} the string is matched by the regular expression---that is,
|
|
364 |
which part of the string is matched by which part of the regular
|
|
365 |
expression. For this consider again the string \<open>xy\<close> and
|
|
366 |
the regular expression \mbox{\<open>(x + (y + xy))\<^sup>\<star>\<close>}
|
|
367 |
(this time fully parenthesised). We can view this regular expression
|
|
368 |
as tree and if the string \<open>xy\<close> is matched by two Star
|
|
369 |
`iterations', then the \<open>x\<close> is matched by the left-most
|
|
370 |
alternative in this tree and the \<open>y\<close> by the right-left alternative. This
|
|
371 |
suggests to record this matching as
|
|
372 |
|
|
373 |
\begin{center}
|
|
374 |
@{term "Stars [Left(Char x), Right(Left(Char y))]"}
|
|
375 |
\end{center}
|
|
376 |
|
|
377 |
\noindent where @{const Stars}, \<open>Left\<close>, \<open>Right\<close> and \<open>Char\<close> are constructors for values. \<open>Stars\<close> records how many
|
|
378 |
iterations were used; \<open>Left\<close>, respectively \<open>Right\<close>, which
|
|
379 |
alternative is used. This `tree view' leads naturally to the idea that
|
|
380 |
regular expressions act as types and values as inhabiting those types
|
|
381 |
(see, for example, \cite{HosoyaVouillonPierce2005}). The value for
|
|
382 |
matching \<open>xy\<close> in a single `iteration', i.e.~the POSIX value,
|
|
383 |
would look as follows
|
|
384 |
|
|
385 |
\begin{center}
|
|
386 |
@{term "Stars [Seq (Char x) (Char y)]"}
|
|
387 |
\end{center}
|
|
388 |
|
|
389 |
\noindent where @{const Stars} has only a single-element list for the
|
|
390 |
single iteration and @{const Seq} indicates that @{term xy} is matched
|
|
391 |
by a sequence regular expression.
|
|
392 |
|
|
393 |
%, which we will in what follows
|
|
394 |
%write more formally as @{term "SEQ x y"}.
|
|
395 |
|
|
396 |
|
|
397 |
Sulzmann and Lu give a simple algorithm to calculate a value that
|
|
398 |
appears to be the value associated with POSIX matching. The challenge
|
|
399 |
then is to specify that value, in an algorithm-independent fashion,
|
|
400 |
and to show that Sulzmann and Lu's derivative-based algorithm does
|
|
401 |
indeed calculate a value that is correct according to the
|
|
402 |
specification. The answer given by Sulzmann and Lu
|
|
403 |
\cite{Sulzmann2014} is to define a relation (called an ``order
|
|
404 |
relation'') on the set of values of @{term r}, and to show that (once
|
|
405 |
a string to be matched is chosen) there is a maximum element and that
|
|
406 |
it is computed by their derivative-based algorithm. This proof idea is
|
|
407 |
inspired by work of Frisch and Cardelli \cite{Frisch2004} on a GREEDY
|
|
408 |
regular expression matching algorithm. However, we were not able to
|
|
409 |
establish transitivity and totality for the ``order relation'' by
|
|
410 |
Sulzmann and Lu. There are some inherent problems with their approach
|
|
411 |
(of which some of the proofs are not published in
|
|
412 |
\cite{Sulzmann2014}); perhaps more importantly, we give in this paper
|
|
413 |
a simple inductive (and algorithm-independent) definition of what we
|
|
414 |
call being a {\em POSIX value} for a regular expression @{term r} and
|
|
415 |
a string @{term s}; we show that the algorithm by Sulzmann and Lu
|
|
416 |
computes such a value and that such a value is unique. Our proofs are
|
|
417 |
both done by hand and checked in Isabelle/HOL. The experience of
|
|
418 |
doing our proofs has been that this mechanical checking was absolutely
|
|
419 |
essential: this subject area has hidden snares. This was also noted by
|
|
420 |
Kuklewicz \cite{Kuklewicz} who found that nearly all POSIX matching
|
|
421 |
implementations are ``buggy'' \cite[Page 203]{Sulzmann2014} and by
|
|
422 |
Grathwohl et al \cite[Page 36]{CrashCourse2014} who wrote:
|
|
423 |
|
|
424 |
\begin{quote}
|
|
425 |
\it{}``The POSIX strategy is more complicated than the greedy because of
|
|
426 |
the dependence on information about the length of matched strings in the
|
|
427 |
various subexpressions.''
|
|
428 |
\end{quote}
|
|
429 |
|
|
430 |
|
|
431 |
|
|
432 |
\noindent {\bf Contributions:} We have implemented in Isabelle/HOL the
|
|
433 |
derivative-based regular expression matching algorithm of
|
|
434 |
Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this
|
|
435 |
algorithm according to our specification of what a POSIX value is (inspired
|
|
436 |
by work of Vansummeren \cite{Vansummeren2006}). Sulzmann
|
|
437 |
and Lu sketch in \cite{Sulzmann2014} an informal correctness proof: but to
|
|
438 |
us it contains unfillable gaps.\footnote{An extended version of
|
|
439 |
\cite{Sulzmann2014} is available at the website of its first author; this
|
|
440 |
extended version already includes remarks in the appendix that their
|
|
441 |
informal proof contains gaps, and possible fixes are not fully worked out.}
|
|
442 |
Our specification of a POSIX value consists of a simple inductive definition
|
|
443 |
that given a string and a regular expression uniquely determines this value.
|
|
444 |
We also show that our definition is equivalent to an ordering
|
|
445 |
of values based on positions by Okui and Suzuki \cite{OkuiSuzuki2010}.
|
|
446 |
|
|
447 |
%Derivatives as calculated by Brzozowski's method are usually more complex
|
|
448 |
%regular expressions than the initial one; various optimisations are
|
|
449 |
%possible. We prove the correctness when simplifications of @{term "ALT ZERO r"},
|
|
450 |
%@{term "ALT r ZERO"}, @{term "SEQ ONE r"} and @{term "SEQ r ONE"} to
|
|
451 |
%@{term r} are applied.
|
|
452 |
|
|
453 |
We extend our results to ??? Bitcoded version??
|
|
454 |
|
|
455 |
\<close>
|
|
456 |
|
371
|
457 |
|
|
458 |
|
|
459 |
|
367
|
460 |
section \<open>Preliminaries\<close>
|
|
461 |
|
|
462 |
text \<open>\noindent Strings in Isabelle/HOL are lists of characters with
|
|
463 |
the empty string being represented by the empty list, written @{term
|
|
464 |
"[]"}, and list-cons being written as @{term "DUMMY # DUMMY"}. Often
|
|
465 |
we use the usual bracket notation for lists also for strings; for
|
|
466 |
example a string consisting of just a single character @{term c} is
|
|
467 |
written @{term "[c]"}. We use the usual definitions for
|
|
468 |
\emph{prefixes} and \emph{strict prefixes} of strings. By using the
|
|
469 |
type @{type char} for characters we have a supply of finitely many
|
|
470 |
characters roughly corresponding to the ASCII character set. Regular
|
|
471 |
expressions are defined as usual as the elements of the following
|
|
472 |
inductive datatype:
|
|
473 |
|
|
474 |
\begin{center}
|
|
475 |
\<open>r :=\<close>
|
|
476 |
@{const "ZERO"} $\mid$
|
|
477 |
@{const "ONE"} $\mid$
|
|
478 |
@{term "CH c"} $\mid$
|
|
479 |
@{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$
|
|
480 |
@{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$
|
|
481 |
@{term "STAR r"}
|
|
482 |
\end{center}
|
|
483 |
|
|
484 |
\noindent where @{const ZERO} stands for the regular expression that does
|
|
485 |
not match any string, @{const ONE} for the regular expression that matches
|
|
486 |
only the empty string and @{term c} for matching a character literal. The
|
|
487 |
language of a regular expression is also defined as usual by the
|
|
488 |
recursive function @{term L} with the six clauses:
|
|
489 |
|
|
490 |
\begin{center}
|
|
491 |
\begin{tabular}{l@ {\hspace{4mm}}rcl}
|
|
492 |
\textit{(1)} & @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
|
|
493 |
\textit{(2)} & @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
|
|
494 |
\textit{(3)} & @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
|
|
495 |
\textit{(4)} & @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ &
|
|
496 |
@{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
497 |
\textit{(5)} & @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ &
|
|
498 |
@{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
499 |
\textit{(6)} & @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
|
|
500 |
\end{tabular}
|
|
501 |
\end{center}
|
|
502 |
|
|
503 |
\noindent In clause \textit{(4)} we use the operation @{term "DUMMY ;;
|
|
504 |
DUMMY"} for the concatenation of two languages (it is also list-append for
|
|
505 |
strings). We use the star-notation for regular expressions and for
|
|
506 |
languages (in the last clause above). The star for languages is defined
|
|
507 |
inductively by two clauses: \<open>(i)\<close> the empty string being in
|
|
508 |
the star of a language and \<open>(ii)\<close> if @{term "s\<^sub>1"} is in a
|
|
509 |
language and @{term "s\<^sub>2"} in the star of this language, then also @{term
|
|
510 |
"s\<^sub>1 @ s\<^sub>2"} is in the star of this language. It will also be convenient
|
|
511 |
to use the following notion of a \emph{semantic derivative} (or \emph{left
|
|
512 |
quotient}) of a language defined as
|
|
513 |
%
|
|
514 |
\begin{center}
|
|
515 |
@{thm Der_def}\;.
|
|
516 |
\end{center}
|
|
517 |
|
|
518 |
\noindent
|
|
519 |
For semantic derivatives we have the following equations (for example
|
|
520 |
mechanically proved in \cite{Krauss2011}):
|
|
521 |
%
|
|
522 |
\begin{equation}\label{SemDer}
|
|
523 |
\begin{array}{lcl}
|
|
524 |
@{thm (lhs) Der_null} & \dn & @{thm (rhs) Der_null}\\
|
|
525 |
@{thm (lhs) Der_empty} & \dn & @{thm (rhs) Der_empty}\\
|
|
526 |
@{thm (lhs) Der_char} & \dn & @{thm (rhs) Der_char}\\
|
|
527 |
@{thm (lhs) Der_union} & \dn & @{thm (rhs) Der_union}\\
|
|
528 |
@{thm (lhs) Der_Sequ} & \dn & @{thm (rhs) Der_Sequ}\\
|
|
529 |
@{thm (lhs) Der_star} & \dn & @{thm (rhs) Der_star}
|
|
530 |
\end{array}
|
|
531 |
\end{equation}
|
|
532 |
|
|
533 |
|
|
534 |
\noindent \emph{\Brz's derivatives} of regular expressions
|
|
535 |
\cite{Brzozowski1964} can be easily defined by two recursive functions:
|
|
536 |
the first is from regular expressions to booleans (implementing a test
|
|
537 |
when a regular expression can match the empty string), and the second
|
|
538 |
takes a regular expression and a character to a (derivative) regular
|
|
539 |
expression:
|
|
540 |
|
|
541 |
\begin{center}
|
|
542 |
\begin{tabular}{lcl}
|
|
543 |
@{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
|
|
544 |
@{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
|
|
545 |
@{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
|
|
546 |
@{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
547 |
@{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
548 |
@{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\
|
|
549 |
|
|
550 |
% \end{tabular}
|
|
551 |
% \end{center}
|
|
552 |
|
|
553 |
% \begin{center}
|
|
554 |
% \begin{tabular}{lcl}
|
|
555 |
|
|
556 |
@{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
|
|
557 |
@{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
|
|
558 |
@{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
|
|
559 |
@{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
|
|
560 |
@{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
|
|
561 |
@{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}
|
|
562 |
\end{tabular}
|
|
563 |
\end{center}
|
|
564 |
|
|
565 |
\noindent
|
|
566 |
We may extend this definition to give derivatives w.r.t.~strings:
|
|
567 |
|
|
568 |
\begin{center}
|
|
569 |
\begin{tabular}{lcl}
|
|
570 |
@{thm (lhs) ders.simps(1)} & $\dn$ & @{thm (rhs) ders.simps(1)}\\
|
|
571 |
@{thm (lhs) ders.simps(2)} & $\dn$ & @{thm (rhs) ders.simps(2)}\\
|
|
572 |
\end{tabular}
|
|
573 |
\end{center}
|
|
574 |
|
|
575 |
\noindent Given the equations in \eqref{SemDer}, it is a relatively easy
|
|
576 |
exercise in mechanical reasoning to establish that
|
|
577 |
|
|
578 |
\begin{proposition}\label{derprop}\mbox{}\\
|
|
579 |
\begin{tabular}{ll}
|
|
580 |
\textit{(1)} & @{thm (lhs) nullable_correctness} if and only if
|
|
581 |
@{thm (rhs) nullable_correctness}, and \\
|
|
582 |
\textit{(2)} & @{thm[mode=IfThen] der_correctness}.
|
|
583 |
\end{tabular}
|
|
584 |
\end{proposition}
|
|
585 |
|
|
586 |
\noindent With this in place it is also very routine to prove that the
|
|
587 |
regular expression matcher defined as
|
|
588 |
%
|
|
589 |
\begin{center}
|
|
590 |
@{thm match_def}
|
|
591 |
\end{center}
|
|
592 |
|
|
593 |
\noindent gives a positive answer if and only if @{term "s \<in> L r"}.
|
|
594 |
Consequently, this regular expression matching algorithm satisfies the
|
|
595 |
usual specification for regular expression matching. While the matcher
|
|
596 |
above calculates a provably correct YES/NO answer for whether a regular
|
|
597 |
expression matches a string or not, the novel idea of Sulzmann and Lu
|
|
598 |
\cite{Sulzmann2014} is to append another phase to this algorithm in order
|
|
599 |
to calculate a [lexical] value. We will explain the details next.
|
|
600 |
|
|
601 |
\<close>
|
|
602 |
|
|
603 |
section \<open>POSIX Regular Expression Matching\label{posixsec}\<close>
|
|
604 |
|
|
605 |
text \<open>
|
|
606 |
|
|
607 |
There have been many previous works that use values for encoding
|
|
608 |
\emph{how} a regular expression matches a string.
|
|
609 |
The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to
|
|
610 |
define a function on values that mirrors (but inverts) the
|
|
611 |
construction of the derivative on regular expressions. \emph{Values}
|
|
612 |
are defined as the inductive datatype
|
|
613 |
|
|
614 |
\begin{center}
|
|
615 |
\<open>v :=\<close>
|
|
616 |
@{const "Void"} $\mid$
|
|
617 |
@{term "val.Char c"} $\mid$
|
|
618 |
@{term "Left v"} $\mid$
|
|
619 |
@{term "Right v"} $\mid$
|
|
620 |
@{term "Seq v\<^sub>1 v\<^sub>2"} $\mid$
|
|
621 |
@{term "Stars vs"}
|
|
622 |
\end{center}
|
|
623 |
|
|
624 |
\noindent where we use @{term vs} to stand for a list of
|
|
625 |
values. (This is similar to the approach taken by Frisch and
|
|
626 |
Cardelli for GREEDY matching \cite{Frisch2004}, and Sulzmann and Lu
|
|
627 |
for POSIX matching \cite{Sulzmann2014}). The string underlying a
|
|
628 |
value can be calculated by the @{const flat} function, written
|
|
629 |
@{term "flat DUMMY"} and defined as:
|
|
630 |
|
|
631 |
\begin{center}
|
|
632 |
\begin{tabular}[t]{lcl}
|
|
633 |
@{thm (lhs) flat.simps(1)} & $\dn$ & @{thm (rhs) flat.simps(1)}\\
|
|
634 |
@{thm (lhs) flat.simps(2)} & $\dn$ & @{thm (rhs) flat.simps(2)}\\
|
|
635 |
@{thm (lhs) flat.simps(3)} & $\dn$ & @{thm (rhs) flat.simps(3)}\\
|
|
636 |
@{thm (lhs) flat.simps(4)} & $\dn$ & @{thm (rhs) flat.simps(4)}
|
|
637 |
\end{tabular}\hspace{14mm}
|
|
638 |
\begin{tabular}[t]{lcl}
|
|
639 |
@{thm (lhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
|
|
640 |
@{thm (lhs) flat.simps(6)} & $\dn$ & @{thm (rhs) flat.simps(6)}\\
|
|
641 |
@{thm (lhs) flat.simps(7)} & $\dn$ & @{thm (rhs) flat.simps(7)}\\
|
|
642 |
\end{tabular}
|
|
643 |
\end{center}
|
|
644 |
|
|
645 |
\noindent We will sometimes refer to the underlying string of a
|
|
646 |
value as \emph{flattened value}. We will also overload our notation and
|
|
647 |
use @{term "flats vs"} for flattening a list of values and concatenating
|
|
648 |
the resulting strings.
|
|
649 |
|
|
650 |
Sulzmann and Lu define
|
|
651 |
inductively an \emph{inhabitation relation} that associates values to
|
|
652 |
regular expressions. We define this relation as
|
|
653 |
follows:\footnote{Note that the rule for @{term Stars} differs from
|
|
654 |
our earlier paper \cite{AusafDyckhoffUrban2016}. There we used the
|
|
655 |
original definition by Sulzmann and Lu which does not require that
|
|
656 |
the values @{term "v \<in> set vs"} flatten to a non-empty
|
|
657 |
string. The reason for introducing the more restricted version of
|
|
658 |
lexical values is convenience later on when reasoning about an
|
|
659 |
ordering relation for values.}
|
|
660 |
|
|
661 |
\begin{center}
|
|
662 |
\begin{tabular}{c@ {\hspace{12mm}}c}\label{prfintros}
|
|
663 |
\\[-8mm]
|
|
664 |
@{thm[mode=Axiom] Prf.intros(4)} &
|
|
665 |
@{thm[mode=Axiom] Prf.intros(5)[of "c"]}\\[4mm]
|
|
666 |
@{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} &
|
|
667 |
@{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\\[4mm]
|
|
668 |
@{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]} &
|
|
669 |
@{thm[mode=Rule] Prf.intros(6)[of "vs"]}
|
|
670 |
\end{tabular}
|
|
671 |
\end{center}
|
|
672 |
|
|
673 |
\noindent where in the clause for @{const "Stars"} we use the
|
|
674 |
notation @{term "v \<in> set vs"} for indicating that \<open>v\<close> is a
|
|
675 |
member in the list \<open>vs\<close>. We require in this rule that every
|
|
676 |
value in @{term vs} flattens to a non-empty string. The idea is that
|
|
677 |
@{term "Stars"}-values satisfy the informal Star Rule (see Introduction)
|
|
678 |
where the $^\star$ does not match the empty string unless this is
|
|
679 |
the only match for the repetition. Note also that no values are
|
|
680 |
associated with the regular expression @{term ZERO}, and that the
|
|
681 |
only value associated with the regular expression @{term ONE} is
|
|
682 |
@{term Void}. It is routine to establish how values ``inhabiting''
|
|
683 |
a regular expression correspond to the language of a regular
|
|
684 |
expression, namely
|
|
685 |
|
|
686 |
\begin{proposition}\label{inhabs}
|
|
687 |
@{thm L_flat_Prf}
|
|
688 |
\end{proposition}
|
|
689 |
|
|
690 |
\noindent
|
|
691 |
Given a regular expression \<open>r\<close> and a string \<open>s\<close>, we define the
|
|
692 |
set of all \emph{Lexical Values} inhabited by \<open>r\<close> with the underlying string
|
|
693 |
being \<open>s\<close>:\footnote{Okui and Suzuki refer to our lexical values
|
|
694 |
as \emph{canonical values} in \cite{OkuiSuzuki2010}. The notion of \emph{non-problematic
|
|
695 |
values} by Cardelli and Frisch \cite{Frisch2004} is related, but not identical
|
|
696 |
to our lexical values.}
|
|
697 |
|
|
698 |
\begin{center}
|
|
699 |
@{thm LV_def}
|
|
700 |
\end{center}
|
|
701 |
|
|
702 |
\noindent The main property of @{term "LV r s"} is that it is alway finite.
|
|
703 |
|
|
704 |
\begin{proposition}
|
|
705 |
@{thm LV_finite}
|
|
706 |
\end{proposition}
|
|
707 |
|
|
708 |
\noindent This finiteness property does not hold in general if we
|
|
709 |
remove the side-condition about @{term "flat v \<noteq> []"} in the
|
|
710 |
@{term Stars}-rule above. For example using Sulzmann and Lu's
|
|
711 |
less restrictive definition, @{term "LV (STAR ONE) []"} would contain
|
|
712 |
infinitely many values, but according to our more restricted
|
|
713 |
definition only a single value, namely @{thm LV_STAR_ONE_empty}.
|
|
714 |
|
|
715 |
If a regular expression \<open>r\<close> matches a string \<open>s\<close>, then
|
|
716 |
generally the set @{term "LV r s"} is not just a singleton set. In
|
|
717 |
case of POSIX matching the problem is to calculate the unique lexical value
|
|
718 |
that satisfies the (informal) POSIX rules from the Introduction.
|
|
719 |
Graphically the POSIX value calculation algorithm by Sulzmann and Lu
|
|
720 |
can be illustrated by the picture in Figure~\ref{Sulz} where the
|
|
721 |
path from the left to the right involving @{term
|
|
722 |
derivatives}/@{const nullable} is the first phase of the algorithm
|
|
723 |
(calculating successive \Brz's derivatives) and @{const
|
|
724 |
mkeps}/\<open>inj\<close>, the path from right to left, the second
|
|
725 |
phase. This picture shows the steps required when a regular
|
|
726 |
expression, say \<open>r\<^sub>1\<close>, matches the string @{term
|
|
727 |
"[a,b,c]"}. We first build the three derivatives (according to
|
|
728 |
@{term a}, @{term b} and @{term c}). We then use @{const nullable}
|
|
729 |
to find out whether the resulting derivative regular expression
|
|
730 |
@{term "r\<^sub>4"} can match the empty string. If yes, we call the
|
|
731 |
function @{const mkeps} that produces a value @{term "v\<^sub>4"}
|
|
732 |
for how @{term "r\<^sub>4"} can match the empty string (taking into
|
|
733 |
account the POSIX constraints in case there are several ways). This
|
|
734 |
function is defined by the clauses:
|
|
735 |
|
|
736 |
\begin{figure}[t]
|
|
737 |
\begin{center}
|
|
738 |
\begin{tikzpicture}[scale=2,node distance=1.3cm,
|
|
739 |
every node/.style={minimum size=6mm}]
|
|
740 |
\node (r1) {@{term "r\<^sub>1"}};
|
|
741 |
\node (r2) [right=of r1]{@{term "r\<^sub>2"}};
|
|
742 |
\draw[->,line width=1mm](r1)--(r2) node[above,midway] {@{term "der a DUMMY"}};
|
|
743 |
\node (r3) [right=of r2]{@{term "r\<^sub>3"}};
|
|
744 |
\draw[->,line width=1mm](r2)--(r3) node[above,midway] {@{term "der b DUMMY"}};
|
|
745 |
\node (r4) [right=of r3]{@{term "r\<^sub>4"}};
|
|
746 |
\draw[->,line width=1mm](r3)--(r4) node[above,midway] {@{term "der c DUMMY"}};
|
|
747 |
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{@{term nullable}}};
|
|
748 |
\node (v4) [below=of r4]{@{term "v\<^sub>4"}};
|
|
749 |
\draw[->,line width=1mm](r4) -- (v4);
|
|
750 |
\node (v3) [left=of v4] {@{term "v\<^sub>3"}};
|
|
751 |
\draw[->,line width=1mm](v4)--(v3) node[below,midway] {\<open>inj r\<^sub>3 c\<close>};
|
|
752 |
\node (v2) [left=of v3]{@{term "v\<^sub>2"}};
|
|
753 |
\draw[->,line width=1mm](v3)--(v2) node[below,midway] {\<open>inj r\<^sub>2 b\<close>};
|
|
754 |
\node (v1) [left=of v2] {@{term "v\<^sub>1"}};
|
|
755 |
\draw[->,line width=1mm](v2)--(v1) node[below,midway] {\<open>inj r\<^sub>1 a\<close>};
|
|
756 |
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}};
|
|
757 |
\end{tikzpicture}
|
|
758 |
\end{center}
|
|
759 |
\mbox{}\\[-13mm]
|
|
760 |
|
|
761 |
\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014},
|
|
762 |
matching the string @{term "[a,b,c]"}. The first phase (the arrows from
|
|
763 |
left to right) is \Brz's matcher building successive derivatives. If the
|
|
764 |
last regular expression is @{term nullable}, then the functions of the
|
|
765 |
second phase are called (the top-down and right-to-left arrows): first
|
|
766 |
@{term mkeps} calculates a value @{term "v\<^sub>4"} witnessing
|
|
767 |
how the empty string has been recognised by @{term "r\<^sub>4"}. After
|
|
768 |
that the function @{term inj} ``injects back'' the characters of the string into
|
|
769 |
the values.
|
|
770 |
\label{Sulz}}
|
|
771 |
\end{figure}
|
|
772 |
|
|
773 |
\begin{center}
|
|
774 |
\begin{tabular}{lcl}
|
|
775 |
@{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
|
|
776 |
@{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
777 |
@{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
778 |
@{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
|
|
779 |
\end{tabular}
|
|
780 |
\end{center}
|
|
781 |
|
|
782 |
\noindent Note that this function needs only to be partially defined,
|
|
783 |
namely only for regular expressions that are nullable. In case @{const
|
|
784 |
nullable} fails, the string @{term "[a,b,c]"} cannot be matched by @{term
|
|
785 |
"r\<^sub>1"} and the null value @{term "None"} is returned. Note also how this function
|
|
786 |
makes some subtle choices leading to a POSIX value: for example if an
|
|
787 |
alternative regular expression, say @{term "ALT r\<^sub>1 r\<^sub>2"}, can
|
|
788 |
match the empty string and furthermore @{term "r\<^sub>1"} can match the
|
|
789 |
empty string, then we return a \<open>Left\<close>-value. The \<open>Right\<close>-value will only be returned if @{term "r\<^sub>1"} cannot match the empty
|
|
790 |
string.
|
|
791 |
|
|
792 |
The most interesting idea from Sulzmann and Lu \cite{Sulzmann2014} is
|
|
793 |
the construction of a value for how @{term "r\<^sub>1"} can match the
|
|
794 |
string @{term "[a,b,c]"} from the value how the last derivative, @{term
|
|
795 |
"r\<^sub>4"} in Fig.~\ref{Sulz}, can match the empty string. Sulzmann and
|
|
796 |
Lu achieve this by stepwise ``injecting back'' the characters into the
|
|
797 |
values thus inverting the operation of building derivatives, but on the level
|
|
798 |
of values. The corresponding function, called @{term inj}, takes three
|
|
799 |
arguments, a regular expression, a character and a value. For example in
|
|
800 |
the first (or right-most) @{term inj}-step in Fig.~\ref{Sulz} the regular
|
|
801 |
expression @{term "r\<^sub>3"}, the character @{term c} from the last
|
|
802 |
derivative step and @{term "v\<^sub>4"}, which is the value corresponding
|
|
803 |
to the derivative regular expression @{term "r\<^sub>4"}. The result is
|
|
804 |
the new value @{term "v\<^sub>3"}. The final result of the algorithm is
|
|
805 |
the value @{term "v\<^sub>1"}. The @{term inj} function is defined by recursion on regular
|
|
806 |
expressions and by analysing the shape of values (corresponding to
|
|
807 |
the derivative regular expressions).
|
|
808 |
%
|
|
809 |
\begin{center}
|
|
810 |
\begin{tabular}{l@ {\hspace{5mm}}lcl}
|
|
811 |
\textit{(1)} & @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
|
|
812 |
\textit{(2)} & @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ &
|
|
813 |
@{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
|
|
814 |
\textit{(3)} & @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ &
|
|
815 |
@{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
|
|
816 |
\textit{(4)} & @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
|
|
817 |
& @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
|
|
818 |
\textit{(5)} & @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
|
|
819 |
& @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
|
|
820 |
\textit{(6)} & @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$
|
|
821 |
& @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
|
|
822 |
\textit{(7)} & @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$
|
|
823 |
& @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
|
|
824 |
\end{tabular}
|
|
825 |
\end{center}
|
|
826 |
|
|
827 |
\noindent To better understand what is going on in this definition it
|
|
828 |
might be instructive to look first at the three sequence cases (clauses
|
|
829 |
\textit{(4)} -- \textit{(6)}). In each case we need to construct an ``injected value'' for
|
|
830 |
@{term "SEQ r\<^sub>1 r\<^sub>2"}. This must be a value of the form @{term
|
|
831 |
"Seq DUMMY DUMMY"}\,. Recall the clause of the \<open>derivative\<close>-function
|
|
832 |
for sequence regular expressions:
|
|
833 |
|
|
834 |
\begin{center}
|
|
835 |
@{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} $\dn$ @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}
|
|
836 |
\end{center}
|
|
837 |
|
|
838 |
\noindent Consider first the \<open>else\<close>-branch where the derivative is @{term
|
|
839 |
"SEQ (der c r\<^sub>1) r\<^sub>2"}. The corresponding value must therefore
|
|
840 |
be of the form @{term "Seq v\<^sub>1 v\<^sub>2"}, which matches the left-hand
|
|
841 |
side in clause~\textit{(4)} of @{term inj}. In the \<open>if\<close>-branch the derivative is an
|
|
842 |
alternative, namely @{term "ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c
|
|
843 |
r\<^sub>2)"}. This means we either have to consider a \<open>Left\<close>- or
|
|
844 |
\<open>Right\<close>-value. In case of the \<open>Left\<close>-value we know further it
|
|
845 |
must be a value for a sequence regular expression. Therefore the pattern
|
|
846 |
we match in the clause \textit{(5)} is @{term "Left (Seq v\<^sub>1 v\<^sub>2)"},
|
|
847 |
while in \textit{(6)} it is just @{term "Right v\<^sub>2"}. One more interesting
|
|
848 |
point is in the right-hand side of clause \textit{(6)}: since in this case the
|
|
849 |
regular expression \<open>r\<^sub>1\<close> does not ``contribute'' to
|
|
850 |
matching the string, that means it only matches the empty string, we need to
|
|
851 |
call @{const mkeps} in order to construct a value for how @{term "r\<^sub>1"}
|
|
852 |
can match this empty string. A similar argument applies for why we can
|
|
853 |
expect in the left-hand side of clause \textit{(7)} that the value is of the form
|
|
854 |
@{term "Seq v (Stars vs)"}---the derivative of a star is @{term "SEQ (der c r)
|
|
855 |
(STAR r)"}. Finally, the reason for why we can ignore the second argument
|
|
856 |
in clause \textit{(1)} of @{term inj} is that it will only ever be called in cases
|
|
857 |
where @{term "c=d"}, but the usual linearity restrictions in patterns do
|
|
858 |
not allow us to build this constraint explicitly into our function
|
|
859 |
definition.\footnote{Sulzmann and Lu state this clause as @{thm (lhs)
|
|
860 |
injval.simps(1)[of "c" "c"]} $\dn$ @{thm (rhs) injval.simps(1)[of "c"]},
|
|
861 |
but our deviation is harmless.}
|
|
862 |
|
|
863 |
The idea of the @{term inj}-function to ``inject'' a character, say
|
|
864 |
@{term c}, into a value can be made precise by the first part of the
|
|
865 |
following lemma, which shows that the underlying string of an injected
|
|
866 |
value has a prepended character @{term c}; the second part shows that
|
|
867 |
the underlying string of an @{const mkeps}-value is always the empty
|
|
868 |
string (given the regular expression is nullable since otherwise
|
|
869 |
\<open>mkeps\<close> might not be defined).
|
|
870 |
|
|
871 |
\begin{lemma}\mbox{}\smallskip\\\label{Prf_injval_flat}
|
|
872 |
\begin{tabular}{ll}
|
|
873 |
(1) & @{thm[mode=IfThen] Prf_injval_flat}\\
|
|
874 |
(2) & @{thm[mode=IfThen] mkeps_flat}
|
|
875 |
\end{tabular}
|
|
876 |
\end{lemma}
|
|
877 |
|
|
878 |
\begin{proof}
|
|
879 |
Both properties are by routine inductions: the first one can, for example,
|
|
880 |
be proved by induction over the definition of @{term derivatives}; the second by
|
|
881 |
an induction on @{term r}. There are no interesting cases.\qed
|
|
882 |
\end{proof}
|
|
883 |
|
|
884 |
Having defined the @{const mkeps} and \<open>inj\<close> function we can extend
|
|
885 |
\Brz's matcher so that a value is constructed (assuming the
|
|
886 |
regular expression matches the string). The clauses of the Sulzmann and Lu lexer are
|
|
887 |
|
|
888 |
\begin{center}
|
|
889 |
\begin{tabular}{lcl}
|
|
890 |
@{thm (lhs) lexer.simps(1)} & $\dn$ & @{thm (rhs) lexer.simps(1)}\\
|
|
891 |
@{thm (lhs) lexer.simps(2)} & $\dn$ & \<open>case\<close> @{term "lexer (der c r) s"} \<open>of\<close>\\
|
|
892 |
& & \phantom{$|$} @{term "None"} \<open>\<Rightarrow>\<close> @{term None}\\
|
|
893 |
& & $|$ @{term "Some v"} \<open>\<Rightarrow>\<close> @{term "Some (injval r c v)"}
|
|
894 |
\end{tabular}
|
|
895 |
\end{center}
|
|
896 |
|
|
897 |
\noindent If the regular expression does not match the string, @{const None} is
|
|
898 |
returned. If the regular expression \emph{does}
|
|
899 |
match the string, then @{const Some} value is returned. One important
|
|
900 |
virtue of this algorithm is that it can be implemented with ease in any
|
|
901 |
functional programming language and also in Isabelle/HOL. In the remaining
|
|
902 |
part of this section we prove that this algorithm is correct.
|
|
903 |
|
|
904 |
The well-known idea of POSIX matching is informally defined by some
|
|
905 |
rules such as the Longest Match and Priority Rules (see
|
|
906 |
Introduction); as correctly argued in \cite{Sulzmann2014}, this
|
|
907 |
needs formal specification. Sulzmann and Lu define an ``ordering
|
|
908 |
relation'' between values and argue that there is a maximum value,
|
|
909 |
as given by the derivative-based algorithm. In contrast, we shall
|
|
910 |
introduce a simple inductive definition that specifies directly what
|
|
911 |
a \emph{POSIX value} is, incorporating the POSIX-specific choices
|
|
912 |
into the side-conditions of our rules. Our definition is inspired by
|
|
913 |
the matching relation given by Vansummeren~\cite{Vansummeren2006}.
|
|
914 |
The relation we define is ternary and
|
|
915 |
written as \mbox{@{term "s \<in> r \<rightarrow> v"}}, relating
|
|
916 |
strings, regular expressions and values; the inductive rules are given in
|
|
917 |
Figure~\ref{POSIXrules}.
|
|
918 |
We can prove that given a string @{term s} and regular expression @{term
|
|
919 |
r}, the POSIX value @{term v} is uniquely determined by @{term "s \<in> r \<rightarrow> v"}.
|
|
920 |
|
|
921 |
%
|
|
922 |
\begin{figure}[t]
|
|
923 |
\begin{center}
|
|
924 |
\begin{tabular}{c}
|
|
925 |
@{thm[mode=Axiom] Posix.intros(1)}\<open>P\<close>@{term "ONE"} \qquad
|
|
926 |
@{thm[mode=Axiom] Posix.intros(2)}\<open>P\<close>@{term "c"}\medskip\\
|
|
927 |
@{thm[mode=Rule] Posix.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\<open>P+L\<close>\qquad
|
|
928 |
@{thm[mode=Rule] Posix.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\<open>P+R\<close>\medskip\\
|
|
929 |
$\mprset{flushleft}
|
|
930 |
\inferrule
|
|
931 |
{@{thm (prem 1) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \qquad
|
|
932 |
@{thm (prem 2) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \\\\
|
|
933 |
@{thm (prem 3) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}
|
|
934 |
{@{thm (concl) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}$\<open>PS\<close>\\
|
|
935 |
@{thm[mode=Axiom] Posix.intros(7)}\<open>P[]\<close>\medskip\\
|
|
936 |
$\mprset{flushleft}
|
|
937 |
\inferrule
|
|
938 |
{@{thm (prem 1) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad
|
|
939 |
@{thm (prem 2) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad
|
|
940 |
@{thm (prem 3) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \\\\
|
|
941 |
@{thm (prem 4) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}
|
|
942 |
{@{thm (concl) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}$\<open>P\<star>\<close>
|
|
943 |
\end{tabular}
|
|
944 |
\end{center}
|
|
945 |
\caption{Our inductive definition of POSIX values.}\label{POSIXrules}
|
|
946 |
\end{figure}
|
|
947 |
|
|
948 |
|
|
949 |
|
|
950 |
\begin{theorem}\mbox{}\smallskip\\\label{posixdeterm}
|
|
951 |
\begin{tabular}{ll}
|
|
952 |
(1) & If @{thm (prem 1) Posix1(1)} then @{thm (concl)
|
|
953 |
Posix1(1)} and @{thm (concl) Posix1(2)}.\\
|
|
954 |
(2) & @{thm[mode=IfThen] Posix_determ(1)[of _ _ "v" "v'"]}
|
|
955 |
\end{tabular}
|
|
956 |
\end{theorem}
|
|
957 |
|
|
958 |
\begin{proof} Both by induction on the definition of @{term "s \<in> r \<rightarrow> v"}.
|
|
959 |
The second parts follows by a case analysis of @{term "s \<in> r \<rightarrow> v'"} and
|
|
960 |
the first part.\qed
|
|
961 |
\end{proof}
|
|
962 |
|
|
963 |
\noindent
|
|
964 |
We claim that our @{term "s \<in> r \<rightarrow> v"} relation captures the idea behind the four
|
|
965 |
informal POSIX rules shown in the Introduction: Consider for example the
|
|
966 |
rules \<open>P+L\<close> and \<open>P+R\<close> where the POSIX value for a string
|
|
967 |
and an alternative regular expression, that is @{term "(s, ALT r\<^sub>1 r\<^sub>2)"},
|
|
968 |
is specified---it is always a \<open>Left\<close>-value, \emph{except} when the
|
|
969 |
string to be matched is not in the language of @{term "r\<^sub>1"}; only then it
|
|
970 |
is a \<open>Right\<close>-value (see the side-condition in \<open>P+R\<close>).
|
|
971 |
Interesting is also the rule for sequence regular expressions (\<open>PS\<close>). The first two premises state that @{term "v\<^sub>1"} and @{term "v\<^sub>2"}
|
|
972 |
are the POSIX values for @{term "(s\<^sub>1, r\<^sub>1)"} and @{term "(s\<^sub>2, r\<^sub>2)"}
|
|
973 |
respectively. Consider now the third premise and note that the POSIX value
|
|
974 |
of this rule should match the string \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}}. According to the
|
|
975 |
Longest Match Rule, we want that the @{term "s\<^sub>1"} is the longest initial
|
|
976 |
split of \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}} such that @{term "s\<^sub>2"} is still recognised
|
|
977 |
by @{term "r\<^sub>2"}. Let us assume, contrary to the third premise, that there
|
|
978 |
\emph{exist} an @{term "s\<^sub>3"} and @{term "s\<^sub>4"} such that @{term "s\<^sub>2"}
|
|
979 |
can be split up into a non-empty string @{term "s\<^sub>3"} and a possibly empty
|
|
980 |
string @{term "s\<^sub>4"}. Moreover the longer string @{term "s\<^sub>1 @ s\<^sub>3"} can be
|
|
981 |
matched by \<open>r\<^sub>1\<close> and the shorter @{term "s\<^sub>4"} can still be
|
|
982 |
matched by @{term "r\<^sub>2"}. In this case @{term "s\<^sub>1"} would \emph{not} be the
|
|
983 |
longest initial split of \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}} and therefore @{term "Seq v\<^sub>1
|
|
984 |
v\<^sub>2"} cannot be a POSIX value for @{term "(s\<^sub>1 @ s\<^sub>2, SEQ r\<^sub>1 r\<^sub>2)"}.
|
|
985 |
The main point is that our side-condition ensures the Longest
|
|
986 |
Match Rule is satisfied.
|
|
987 |
|
|
988 |
A similar condition is imposed on the POSIX value in the \<open>P\<star>\<close>-rule. Also there we want that @{term "s\<^sub>1"} is the longest initial
|
|
989 |
split of @{term "s\<^sub>1 @ s\<^sub>2"} and furthermore the corresponding value
|
|
990 |
@{term v} cannot be flattened to the empty string. In effect, we require
|
|
991 |
that in each ``iteration'' of the star, some non-empty substring needs to
|
|
992 |
be ``chipped'' away; only in case of the empty string we accept @{term
|
|
993 |
"Stars []"} as the POSIX value. Indeed we can show that our POSIX values
|
|
994 |
are lexical values which exclude those \<open>Stars\<close> that contain subvalues
|
|
995 |
that flatten to the empty string.
|
|
996 |
|
|
997 |
\begin{lemma}\label{LVposix}
|
|
998 |
@{thm [mode=IfThen] Posix_LV}
|
|
999 |
\end{lemma}
|
|
1000 |
|
|
1001 |
\begin{proof}
|
|
1002 |
By routine induction on @{thm (prem 1) Posix_LV}.\qed
|
|
1003 |
\end{proof}
|
|
1004 |
|
|
1005 |
\noindent
|
|
1006 |
Next is the lemma that shows the function @{term "mkeps"} calculates
|
|
1007 |
the POSIX value for the empty string and a nullable regular expression.
|
|
1008 |
|
|
1009 |
\begin{lemma}\label{lemmkeps}
|
|
1010 |
@{thm[mode=IfThen] Posix_mkeps}
|
|
1011 |
\end{lemma}
|
|
1012 |
|
|
1013 |
\begin{proof}
|
|
1014 |
By routine induction on @{term r}.\qed
|
|
1015 |
\end{proof}
|
|
1016 |
|
|
1017 |
\noindent
|
|
1018 |
The central lemma for our POSIX relation is that the \<open>inj\<close>-function
|
|
1019 |
preserves POSIX values.
|
|
1020 |
|
|
1021 |
\begin{lemma}\label{Posix2}
|
|
1022 |
@{thm[mode=IfThen] Posix_injval}
|
|
1023 |
\end{lemma}
|
|
1024 |
|
|
1025 |
\begin{proof}
|
|
1026 |
By induction on \<open>r\<close>. We explain two cases.
|
|
1027 |
|
|
1028 |
\begin{itemize}
|
|
1029 |
\item[$\bullet$] Case @{term "r = ALT r\<^sub>1 r\<^sub>2"}. There are
|
|
1030 |
two subcases, namely \<open>(a)\<close> \mbox{@{term "v = Left v'"}} and @{term
|
|
1031 |
"s \<in> der c r\<^sub>1 \<rightarrow> v'"}; and \<open>(b)\<close> @{term "v = Right v'"}, @{term
|
|
1032 |
"s \<notin> L (der c r\<^sub>1)"} and @{term "s \<in> der c r\<^sub>2 \<rightarrow> v'"}. In \<open>(a)\<close> we
|
|
1033 |
know @{term "s \<in> der c r\<^sub>1 \<rightarrow> v'"}, from which we can infer @{term "(c # s)
|
|
1034 |
\<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v'"} by induction hypothesis and hence @{term "(c #
|
|
1035 |
s) \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> injval (ALT r\<^sub>1 r\<^sub>2) c (Left v')"} as needed. Similarly
|
|
1036 |
in subcase \<open>(b)\<close> where, however, in addition we have to use
|
|
1037 |
Proposition~\ref{derprop}(2) in order to infer @{term "c # s \<notin> L r\<^sub>1"} from @{term
|
|
1038 |
"s \<notin> L (der c r\<^sub>1)"}.\smallskip
|
|
1039 |
|
|
1040 |
\item[$\bullet$] Case @{term "r = SEQ r\<^sub>1 r\<^sub>2"}. There are three subcases:
|
|
1041 |
|
|
1042 |
\begin{quote}
|
|
1043 |
\begin{description}
|
|
1044 |
\item[\<open>(a)\<close>] @{term "v = Left (Seq v\<^sub>1 v\<^sub>2)"} and @{term "nullable r\<^sub>1"}
|
|
1045 |
\item[\<open>(b)\<close>] @{term "v = Right v\<^sub>1"} and @{term "nullable r\<^sub>1"}
|
|
1046 |
\item[\<open>(c)\<close>] @{term "v = Seq v\<^sub>1 v\<^sub>2"} and @{term "\<not> nullable r\<^sub>1"}
|
|
1047 |
\end{description}
|
|
1048 |
\end{quote}
|
|
1049 |
|
|
1050 |
\noindent For \<open>(a)\<close> we know @{term "s\<^sub>1 \<in> der c r\<^sub>1 \<rightarrow> v\<^sub>1"} and
|
|
1051 |
@{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"} as well as
|
|
1052 |
%
|
|
1053 |
\[@{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) \<and> s\<^sub>4 \<in> L r\<^sub>2)"}\]
|
|
1054 |
|
|
1055 |
\noindent From the latter we can infer by Proposition~\ref{derprop}(2):
|
|
1056 |
%
|
|
1057 |
\[@{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> (c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}\]
|
|
1058 |
|
|
1059 |
\noindent We can use the induction hypothesis for \<open>r\<^sub>1\<close> to obtain
|
|
1060 |
@{term "(c # s\<^sub>1) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"}. Putting this all together allows us to infer
|
|
1061 |
@{term "((c # s\<^sub>1) @ s\<^sub>2) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (injval r\<^sub>1 c v\<^sub>1) v\<^sub>2"}. The case \<open>(c)\<close>
|
|
1062 |
is similar.
|
|
1063 |
|
|
1064 |
For \<open>(b)\<close> we know @{term "s \<in> der c r\<^sub>2 \<rightarrow> v\<^sub>1"} and
|
|
1065 |
@{term "s\<^sub>1 @ s\<^sub>2 \<notin> L (SEQ (der c r\<^sub>1) r\<^sub>2)"}. From the former
|
|
1066 |
we have @{term "(c # s) \<in> r\<^sub>2 \<rightarrow> (injval r\<^sub>2 c v\<^sub>1)"} by induction hypothesis
|
|
1067 |
for @{term "r\<^sub>2"}. From the latter we can infer
|
|
1068 |
%
|
|
1069 |
\[@{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}\]
|
|
1070 |
|
|
1071 |
\noindent By Lemma~\ref{lemmkeps} we know @{term "[] \<in> r\<^sub>1 \<rightarrow> (mkeps r\<^sub>1)"}
|
|
1072 |
holds. Putting this all together, we can conclude with @{term "(c #
|
|
1073 |
s) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (mkeps r\<^sub>1) (injval r\<^sub>2 c v\<^sub>1)"}, as required.
|
|
1074 |
|
|
1075 |
Finally suppose @{term "r = STAR r\<^sub>1"}. This case is very similar to the
|
|
1076 |
sequence case, except that we need to also ensure that @{term "flat (injval r\<^sub>1
|
|
1077 |
c v\<^sub>1) \<noteq> []"}. This follows from @{term "(c # s\<^sub>1)
|
|
1078 |
\<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"} (which in turn follows from @{term "s\<^sub>1 \<in> der c
|
|
1079 |
r\<^sub>1 \<rightarrow> v\<^sub>1"} and the induction hypothesis).\qed
|
|
1080 |
\end{itemize}
|
|
1081 |
\end{proof}
|
|
1082 |
|
|
1083 |
\noindent
|
|
1084 |
With Lemma~\ref{Posix2} in place, it is completely routine to establish
|
|
1085 |
that the Sulzmann and Lu lexer satisfies our specification (returning
|
|
1086 |
the null value @{term "None"} iff the string is not in the language of the regular expression,
|
|
1087 |
and returning a unique POSIX value iff the string \emph{is} in the language):
|
|
1088 |
|
|
1089 |
\begin{theorem}\mbox{}\smallskip\\\label{lexercorrect}
|
|
1090 |
\begin{tabular}{ll}
|
|
1091 |
(1) & @{thm (lhs) lexer_correct_None} if and only if @{thm (rhs) lexer_correct_None}\\
|
|
1092 |
(2) & @{thm (lhs) lexer_correct_Some} if and only if @{thm (rhs) lexer_correct_Some}\\
|
|
1093 |
\end{tabular}
|
|
1094 |
\end{theorem}
|
|
1095 |
|
|
1096 |
\begin{proof}
|
|
1097 |
By induction on @{term s} using Lemma~\ref{lemmkeps} and \ref{Posix2}.\qed
|
|
1098 |
\end{proof}
|
|
1099 |
|
|
1100 |
\noindent In \textit{(2)} we further know by Theorem~\ref{posixdeterm} that the
|
|
1101 |
value returned by the lexer must be unique. A simple corollary
|
|
1102 |
of our two theorems is:
|
|
1103 |
|
|
1104 |
\begin{corollary}\mbox{}\smallskip\\\label{lexercorrectcor}
|
|
1105 |
\begin{tabular}{ll}
|
|
1106 |
(1) & @{thm (lhs) lexer_correctness(2)} if and only if @{thm (rhs) lexer_correctness(2)}\\
|
|
1107 |
(2) & @{thm (lhs) lexer_correctness(1)} if and only if @{thm (rhs) lexer_correctness(1)}\\
|
|
1108 |
\end{tabular}
|
|
1109 |
\end{corollary}
|
|
1110 |
|
|
1111 |
\noindent This concludes our correctness proof. Note that we have
|
|
1112 |
not changed the algorithm of Sulzmann and Lu,\footnote{All
|
|
1113 |
deviations we introduced are harmless.} but introduced our own
|
|
1114 |
specification for what a correct result---a POSIX value---should be.
|
|
1115 |
In the next section we show that our specification coincides with
|
|
1116 |
another one given by Okui and Suzuki using a different technique.
|
|
1117 |
|
|
1118 |
\<close>
|
|
1119 |
|
|
1120 |
section \<open>Ordering of Values according to Okui and Suzuki\<close>
|
|
1121 |
|
|
1122 |
text \<open>
|
|
1123 |
|
|
1124 |
While in the previous section we have defined POSIX values directly
|
|
1125 |
in terms of a ternary relation (see inference rules in Figure~\ref{POSIXrules}),
|
|
1126 |
Sulzmann and Lu took a different approach in \cite{Sulzmann2014}:
|
|
1127 |
they introduced an ordering for values and identified POSIX values
|
|
1128 |
as the maximal elements. An extended version of \cite{Sulzmann2014}
|
|
1129 |
is available at the website of its first author; this includes more
|
|
1130 |
details of their proofs, but which are evidently not in final form
|
|
1131 |
yet. Unfortunately, we were not able to verify claims that their
|
|
1132 |
ordering has properties such as being transitive or having maximal
|
|
1133 |
elements.
|
|
1134 |
|
|
1135 |
Okui and Suzuki \cite{OkuiSuzuki2010,OkuiSuzukiTech} described
|
|
1136 |
another ordering of values, which they use to establish the
|
|
1137 |
correctness of their automata-based algorithm for POSIX matching.
|
|
1138 |
Their ordering resembles some aspects of the one given by Sulzmann
|
|
1139 |
and Lu, but overall is quite different. To begin with, Okui and
|
|
1140 |
Suzuki identify POSIX values as minimal, rather than maximal,
|
|
1141 |
elements in their ordering. A more substantial difference is that
|
|
1142 |
the ordering by Okui and Suzuki uses \emph{positions} in order to
|
|
1143 |
identify and compare subvalues. Positions are lists of natural
|
|
1144 |
numbers. This allows them to quite naturally formalise the Longest
|
|
1145 |
Match and Priority rules of the informal POSIX standard. Consider
|
|
1146 |
for example the value @{term v}
|
|
1147 |
|
|
1148 |
\begin{center}
|
|
1149 |
@{term "v == Stars [Seq (Char x) (Char y), Char z]"}
|
|
1150 |
\end{center}
|
|
1151 |
|
|
1152 |
\noindent
|
|
1153 |
At position \<open>[0,1]\<close> of this value is the
|
|
1154 |
subvalue \<open>Char y\<close> and at position \<open>[1]\<close> the
|
|
1155 |
subvalue @{term "Char z"}. At the `root' position, or empty list
|
|
1156 |
@{term "[]"}, is the whole value @{term v}. Positions such as \<open>[0,1,0]\<close> or \<open>[2]\<close> are outside of \<open>v\<close>. If it exists, the subvalue of @{term v} at a position \<open>p\<close>, written @{term "at v p"}, can be recursively defined by
|
|
1157 |
|
|
1158 |
\begin{center}
|
|
1159 |
\begin{tabular}{r@ {\hspace{0mm}}lcl}
|
|
1160 |
@{term v} & \<open>\<downharpoonleft>\<^bsub>[]\<^esub>\<close> & \<open>\<equiv>\<close>& @{thm (rhs) at.simps(1)}\\
|
|
1161 |
@{term "Left v"} & \<open>\<downharpoonleft>\<^bsub>0::ps\<^esub>\<close> & \<open>\<equiv>\<close>& @{thm (rhs) at.simps(2)}\\
|
|
1162 |
@{term "Right v"} & \<open>\<downharpoonleft>\<^bsub>1::ps\<^esub>\<close> & \<open>\<equiv>\<close> &
|
|
1163 |
@{thm (rhs) at.simps(3)[simplified Suc_0_fold]}\\
|
|
1164 |
@{term "Seq v\<^sub>1 v\<^sub>2"} & \<open>\<downharpoonleft>\<^bsub>0::ps\<^esub>\<close> & \<open>\<equiv>\<close> &
|
|
1165 |
@{thm (rhs) at.simps(4)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \\
|
|
1166 |
@{term "Seq v\<^sub>1 v\<^sub>2"} & \<open>\<downharpoonleft>\<^bsub>1::ps\<^esub>\<close>
|
|
1167 |
& \<open>\<equiv>\<close> &
|
|
1168 |
@{thm (rhs) at.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2", simplified Suc_0_fold]} \\
|
|
1169 |
@{term "Stars vs"} & \<open>\<downharpoonleft>\<^bsub>n::ps\<^esub>\<close> & \<open>\<equiv>\<close>& @{thm (rhs) at.simps(6)}\\
|
|
1170 |
\end{tabular}
|
|
1171 |
\end{center}
|
|
1172 |
|
|
1173 |
\noindent In the last clause we use Isabelle's notation @{term "vs ! n"} for the
|
|
1174 |
\<open>n\<close>th element in a list. The set of positions inside a value \<open>v\<close>,
|
|
1175 |
written @{term "Pos v"}, is given by
|
|
1176 |
|
|
1177 |
\begin{center}
|
|
1178 |
\begin{tabular}{lcl}
|
|
1179 |
@{thm (lhs) Pos.simps(1)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(1)}\\
|
|
1180 |
@{thm (lhs) Pos.simps(2)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(2)}\\
|
|
1181 |
@{thm (lhs) Pos.simps(3)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(3)}\\
|
|
1182 |
@{thm (lhs) Pos.simps(4)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(4)}\\
|
|
1183 |
@{thm (lhs) Pos.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
|
|
1184 |
& \<open>\<equiv>\<close>
|
|
1185 |
& @{thm (rhs) Pos.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
|
|
1186 |
@{thm (lhs) Pos_stars} & \<open>\<equiv>\<close> & @{thm (rhs) Pos_stars}\\
|
|
1187 |
\end{tabular}
|
|
1188 |
\end{center}
|
|
1189 |
|
|
1190 |
\noindent
|
|
1191 |
whereby \<open>len\<close> in the last clause stands for the length of a list. Clearly
|
|
1192 |
for every position inside a value there exists a subvalue at that position.
|
|
1193 |
|
|
1194 |
|
|
1195 |
To help understanding the ordering of Okui and Suzuki, consider again
|
|
1196 |
the earlier value
|
|
1197 |
\<open>v\<close> and compare it with the following \<open>w\<close>:
|
|
1198 |
|
|
1199 |
\begin{center}
|
|
1200 |
\begin{tabular}{l}
|
|
1201 |
@{term "v == Stars [Seq (Char x) (Char y), Char z]"}\\
|
|
1202 |
@{term "w == Stars [Char x, Char y, Char z]"}
|
|
1203 |
\end{tabular}
|
|
1204 |
\end{center}
|
|
1205 |
|
|
1206 |
\noindent Both values match the string \<open>xyz\<close>, that means if
|
|
1207 |
we flatten these values at their respective root position, we obtain
|
|
1208 |
\<open>xyz\<close>. However, at position \<open>[0]\<close>, \<open>v\<close> matches
|
|
1209 |
\<open>xy\<close> whereas \<open>w\<close> matches only the shorter \<open>x\<close>. So
|
|
1210 |
according to the Longest Match Rule, we should prefer \<open>v\<close>,
|
|
1211 |
rather than \<open>w\<close> as POSIX value for string \<open>xyz\<close> (and
|
|
1212 |
corresponding regular expression). In order to
|
|
1213 |
formalise this idea, Okui and Suzuki introduce a measure for
|
|
1214 |
subvalues at position \<open>p\<close>, called the \emph{norm} of \<open>v\<close>
|
|
1215 |
at position \<open>p\<close>. We can define this measure in Isabelle as an
|
|
1216 |
integer as follows
|
|
1217 |
|
|
1218 |
\begin{center}
|
|
1219 |
@{thm pflat_len_def}
|
|
1220 |
\end{center}
|
|
1221 |
|
|
1222 |
\noindent where we take the length of the flattened value at
|
|
1223 |
position \<open>p\<close>, provided the position is inside \<open>v\<close>; if
|
|
1224 |
not, then the norm is \<open>-1\<close>. The default for outside
|
|
1225 |
positions is crucial for the POSIX requirement of preferring a
|
|
1226 |
\<open>Left\<close>-value over a \<open>Right\<close>-value (if they can match the
|
|
1227 |
same string---see the Priority Rule from the Introduction). For this
|
|
1228 |
consider
|
|
1229 |
|
|
1230 |
\begin{center}
|
|
1231 |
@{term "v == Left (Char x)"} \qquad and \qquad @{term "w == Right (Char x)"}
|
|
1232 |
\end{center}
|
|
1233 |
|
|
1234 |
\noindent Both values match \<open>x\<close>. At position \<open>[0]\<close>
|
|
1235 |
the norm of @{term v} is \<open>1\<close> (the subvalue matches \<open>x\<close>),
|
|
1236 |
but the norm of \<open>w\<close> is \<open>-1\<close> (the position is outside
|
|
1237 |
\<open>w\<close> according to how we defined the `inside' positions of
|
|
1238 |
\<open>Left\<close>- and \<open>Right\<close>-values). Of course at position
|
|
1239 |
\<open>[1]\<close>, the norms @{term "pflat_len v [1]"} and @{term
|
|
1240 |
"pflat_len w [1]"} are reversed, but the point is that subvalues
|
|
1241 |
will be analysed according to lexicographically ordered
|
|
1242 |
positions. According to this ordering, the position \<open>[0]\<close>
|
|
1243 |
takes precedence over \<open>[1]\<close> and thus also \<open>v\<close> will be
|
|
1244 |
preferred over \<open>w\<close>. The lexicographic ordering of positions, written
|
|
1245 |
@{term "DUMMY \<sqsubset>lex DUMMY"}, can be conveniently formalised
|
|
1246 |
by three inference rules
|
|
1247 |
|
|
1248 |
\begin{center}
|
|
1249 |
\begin{tabular}{ccc}
|
|
1250 |
@{thm [mode=Axiom] lex_list.intros(1)}\hspace{1cm} &
|
|
1251 |
@{thm [mode=Rule] lex_list.intros(3)[where ?p1.0="p\<^sub>1" and ?p2.0="p\<^sub>2" and
|
|
1252 |
?ps1.0="ps\<^sub>1" and ?ps2.0="ps\<^sub>2"]}\hspace{1cm} &
|
|
1253 |
@{thm [mode=Rule] lex_list.intros(2)[where ?ps1.0="ps\<^sub>1" and ?ps2.0="ps\<^sub>2"]}
|
|
1254 |
\end{tabular}
|
|
1255 |
\end{center}
|
|
1256 |
|
|
1257 |
With the norm and lexicographic order in place,
|
|
1258 |
we can state the key definition of Okui and Suzuki
|
|
1259 |
\cite{OkuiSuzuki2010}: a value @{term "v\<^sub>1"} is \emph{smaller at position \<open>p\<close>} than
|
|
1260 |
@{term "v\<^sub>2"}, written @{term "v\<^sub>1 \<sqsubset>val p v\<^sub>2"},
|
|
1261 |
if and only if $(i)$ the norm at position \<open>p\<close> is
|
|
1262 |
greater in @{term "v\<^sub>1"} (that is the string @{term "flat (at v\<^sub>1 p)"} is longer
|
|
1263 |
than @{term "flat (at v\<^sub>2 p)"}) and $(ii)$ all subvalues at
|
|
1264 |
positions that are inside @{term "v\<^sub>1"} or @{term "v\<^sub>2"} and that are
|
|
1265 |
lexicographically smaller than \<open>p\<close>, we have the same norm, namely
|
|
1266 |
|
|
1267 |
\begin{center}
|
|
1268 |
\begin{tabular}{c}
|
|
1269 |
@{thm (lhs) PosOrd_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
|
|
1270 |
\<open>\<equiv>\<close>
|
|
1271 |
$\begin{cases}
|
|
1272 |
(i) & @{term "pflat_len v\<^sub>1 p > pflat_len v\<^sub>2 p"} \quad\text{and}\smallskip \\
|
|
1273 |
(ii) & @{term "(\<forall>q \<in> Pos v\<^sub>1 \<union> Pos v\<^sub>2. q \<sqsubset>lex p --> pflat_len v\<^sub>1 q = pflat_len v\<^sub>2 q)"}
|
|
1274 |
\end{cases}$
|
|
1275 |
\end{tabular}
|
|
1276 |
\end{center}
|
|
1277 |
|
|
1278 |
\noindent The position \<open>p\<close> in this definition acts as the
|
|
1279 |
\emph{first distinct position} of \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close>, where both values match strings of different length
|
|
1280 |
\cite{OkuiSuzuki2010}. Since at \<open>p\<close> the values \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close> match different strings, the
|
|
1281 |
ordering is irreflexive. Derived from the definition above
|
|
1282 |
are the following two orderings:
|
|
1283 |
|
|
1284 |
\begin{center}
|
|
1285 |
\begin{tabular}{l}
|
|
1286 |
@{thm PosOrd_ex_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
|
|
1287 |
@{thm PosOrd_ex_eq_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
|
|
1288 |
\end{tabular}
|
|
1289 |
\end{center}
|
|
1290 |
|
|
1291 |
While we encountered a number of obstacles for establishing properties like
|
|
1292 |
transitivity for the ordering of Sulzmann and Lu (and which we failed
|
|
1293 |
to overcome), it is relatively straightforward to establish this
|
|
1294 |
property for the orderings
|
|
1295 |
@{term "DUMMY :\<sqsubset>val DUMMY"} and @{term "DUMMY :\<sqsubseteq>val DUMMY"}
|
|
1296 |
by Okui and Suzuki.
|
|
1297 |
|
|
1298 |
\begin{lemma}[Transitivity]\label{transitivity}
|
|
1299 |
@{thm [mode=IfThen] PosOrd_trans[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and ?v3.0="v\<^sub>3"]}
|
|
1300 |
\end{lemma}
|
|
1301 |
|
|
1302 |
\begin{proof} From the assumption we obtain two positions \<open>p\<close>
|
|
1303 |
and \<open>q\<close>, where the values \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close> (respectively \<open>v\<^sub>2\<close> and \<open>v\<^sub>3\<close>) are `distinct'. Since \<open>\<prec>\<^bsub>lex\<^esub>\<close> is trichotomous, we need to consider
|
|
1304 |
three cases, namely @{term "p = q"}, @{term "p \<sqsubset>lex q"} and
|
|
1305 |
@{term "q \<sqsubset>lex p"}. Let us look at the first case. Clearly
|
|
1306 |
@{term "pflat_len v\<^sub>2 p < pflat_len v\<^sub>1 p"} and @{term
|
|
1307 |
"pflat_len v\<^sub>3 p < pflat_len v\<^sub>2 p"} imply @{term
|
|
1308 |
"pflat_len v\<^sub>3 p < pflat_len v\<^sub>1 p"}. It remains to show
|
|
1309 |
that for a @{term "p' \<in> Pos v\<^sub>1 \<union> Pos v\<^sub>3"}
|
|
1310 |
with @{term "p' \<sqsubset>lex p"} that @{term "pflat_len v\<^sub>1
|
|
1311 |
p' = pflat_len v\<^sub>3 p'"} holds. Suppose @{term "p' \<in> Pos
|
|
1312 |
v\<^sub>1"}, then we can infer from the first assumption that @{term
|
|
1313 |
"pflat_len v\<^sub>1 p' = pflat_len v\<^sub>2 p'"}. But this means
|
|
1314 |
that @{term "p'"} must be in @{term "Pos v\<^sub>2"} too (the norm
|
|
1315 |
cannot be \<open>-1\<close> given @{term "p' \<in> Pos v\<^sub>1"}).
|
|
1316 |
Hence we can use the second assumption and
|
|
1317 |
infer @{term "pflat_len v\<^sub>2 p' = pflat_len v\<^sub>3 p'"},
|
|
1318 |
which concludes this case with @{term "v\<^sub>1 :\<sqsubset>val
|
|
1319 |
v\<^sub>3"}. The reasoning in the other cases is similar.\qed
|
|
1320 |
\end{proof}
|
|
1321 |
|
|
1322 |
\noindent
|
|
1323 |
The proof for $\preccurlyeq$ is similar and omitted.
|
|
1324 |
It is also straightforward to show that \<open>\<prec>\<close> and
|
|
1325 |
$\preccurlyeq$ are partial orders. Okui and Suzuki furthermore show that they
|
|
1326 |
are linear orderings for lexical values \cite{OkuiSuzuki2010} of a given
|
|
1327 |
regular expression and given string, but we have not formalised this in Isabelle. It is
|
|
1328 |
not essential for our results. What we are going to show below is
|
|
1329 |
that for a given \<open>r\<close> and \<open>s\<close>, the orderings have a unique
|
|
1330 |
minimal element on the set @{term "LV r s"}, which is the POSIX value
|
|
1331 |
we defined in the previous section. We start with two properties that
|
|
1332 |
show how the length of a flattened value relates to the \<open>\<prec>\<close>-ordering.
|
|
1333 |
|
|
1334 |
\begin{proposition}\mbox{}\smallskip\\\label{ordlen}
|
|
1335 |
\begin{tabular}{@ {}ll}
|
|
1336 |
(1) &
|
|
1337 |
@{thm [mode=IfThen] PosOrd_shorterE[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
|
|
1338 |
(2) &
|
|
1339 |
@{thm [mode=IfThen] PosOrd_shorterI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
|
|
1340 |
\end{tabular}
|
|
1341 |
\end{proposition}
|
|
1342 |
|
|
1343 |
\noindent Both properties follow from the definition of the ordering. Note that
|
|
1344 |
\textit{(2)} entails that a value, say @{term "v\<^sub>2"}, whose underlying
|
|
1345 |
string is a strict prefix of another flattened value, say @{term "v\<^sub>1"}, then
|
|
1346 |
@{term "v\<^sub>1"} must be smaller than @{term "v\<^sub>2"}. For our proofs it
|
|
1347 |
will be useful to have the following properties---in each case the underlying strings
|
|
1348 |
of the compared values are the same:
|
|
1349 |
|
|
1350 |
\begin{proposition}\mbox{}\smallskip\\\label{ordintros}
|
|
1351 |
\begin{tabular}{ll}
|
|
1352 |
\textit{(1)} &
|
|
1353 |
@{thm [mode=IfThen] PosOrd_Left_Right[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
|
|
1354 |
\textit{(2)} & If
|
|
1355 |
@{thm (prem 1) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;then\;
|
|
1356 |
@{thm (lhs) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;iff\;
|
|
1357 |
@{thm (rhs) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
|
|
1358 |
\textit{(3)} & If
|
|
1359 |
@{thm (prem 1) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;then\;
|
|
1360 |
@{thm (lhs) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;iff\;
|
|
1361 |
@{thm (rhs) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
|
|
1362 |
\textit{(4)} & If
|
|
1363 |
@{thm (prem 1) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]} \;then\;
|
|
1364 |
@{thm (lhs) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]} \;iff\;
|
|
1365 |
@{thm (rhs) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]}\\
|
|
1366 |
\textit{(5)} & If
|
|
1367 |
@{thm (prem 2) PosOrd_SeqI1[simplified, where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
|
|
1368 |
?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]} \;and\;
|
|
1369 |
@{thm (prem 1) PosOrd_SeqI1[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
|
|
1370 |
?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]} \;then\;
|
|
1371 |
@{thm (concl) PosOrd_SeqI1[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
|
|
1372 |
?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]}\\
|
|
1373 |
\textit{(6)} & If
|
|
1374 |
@{thm (prem 1) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;then\;
|
|
1375 |
@{thm (lhs) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;iff\;
|
|
1376 |
@{thm (rhs) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]}\\
|
|
1377 |
|
|
1378 |
\textit{(7)} & If
|
|
1379 |
@{thm (prem 2) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
|
|
1380 |
?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;and\;
|
|
1381 |
@{thm (prem 1) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
|
|
1382 |
?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;then\;
|
|
1383 |
@{thm (concl) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
|
|
1384 |
?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]}\\
|
|
1385 |
\end{tabular}
|
|
1386 |
\end{proposition}
|
|
1387 |
|
|
1388 |
\noindent One might prefer that statements \textit{(4)} and \textit{(5)}
|
|
1389 |
(respectively \textit{(6)} and \textit{(7)})
|
|
1390 |
are combined into a single \textit{iff}-statement (like the ones for \<open>Left\<close> and \<open>Right\<close>). Unfortunately this cannot be done easily: such
|
|
1391 |
a single statement would require an additional assumption about the
|
|
1392 |
two values @{term "Seq v\<^sub>1 v\<^sub>2"} and @{term "Seq w\<^sub>1 w\<^sub>2"}
|
|
1393 |
being inhabited by the same regular expression. The
|
|
1394 |
complexity of the proofs involved seems to not justify such a
|
|
1395 |
`cleaner' single statement. The statements given are just the properties that
|
|
1396 |
allow us to establish our theorems without any difficulty. The proofs
|
|
1397 |
for Proposition~\ref{ordintros} are routine.
|
|
1398 |
|
|
1399 |
|
|
1400 |
Next we establish how Okui and Suzuki's orderings relate to our
|
|
1401 |
definition of POSIX values. Given a \<open>POSIX\<close> value \<open>v\<^sub>1\<close>
|
|
1402 |
for \<open>r\<close> and \<open>s\<close>, then any other lexical value \<open>v\<^sub>2\<close> in @{term "LV r s"} is greater or equal than \<open>v\<^sub>1\<close>, namely:
|
|
1403 |
|
|
1404 |
|
|
1405 |
\begin{theorem}\label{orderone}
|
|
1406 |
@{thm [mode=IfThen] Posix_PosOrd[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
|
|
1407 |
\end{theorem}
|
|
1408 |
|
|
1409 |
\begin{proof} By induction on our POSIX rules. By
|
|
1410 |
Theorem~\ref{posixdeterm} and the definition of @{const LV}, it is clear
|
|
1411 |
that \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close> have the same
|
|
1412 |
underlying string @{term s}. The three base cases are
|
|
1413 |
straightforward: for example for @{term "v\<^sub>1 = Void"}, we have
|
|
1414 |
that @{term "v\<^sub>2 \<in> LV ONE []"} must also be of the form
|
|
1415 |
\mbox{@{term "v\<^sub>2 = Void"}}. Therefore we have @{term
|
|
1416 |
"v\<^sub>1 :\<sqsubseteq>val v\<^sub>2"}. The inductive cases for
|
|
1417 |
\<open>r\<close> being of the form @{term "ALT r\<^sub>1 r\<^sub>2"} and
|
|
1418 |
@{term "SEQ r\<^sub>1 r\<^sub>2"} are as follows:
|
|
1419 |
|
|
1420 |
|
|
1421 |
\begin{itemize}
|
|
1422 |
|
|
1423 |
\item[$\bullet$] Case \<open>P+L\<close> with @{term "s \<in> (ALT r\<^sub>1 r\<^sub>2)
|
|
1424 |
\<rightarrow> (Left w\<^sub>1)"}: In this case the value
|
|
1425 |
@{term "v\<^sub>2"} is either of the
|
|
1426 |
form @{term "Left w\<^sub>2"} or @{term "Right w\<^sub>2"}. In the
|
|
1427 |
latter case we can immediately conclude with \mbox{@{term "v\<^sub>1
|
|
1428 |
:\<sqsubseteq>val v\<^sub>2"}} since a \<open>Left\<close>-value with the
|
|
1429 |
same underlying string \<open>s\<close> is always smaller than a
|
|
1430 |
\<open>Right\<close>-value by Proposition~\ref{ordintros}\textit{(1)}.
|
|
1431 |
In the former case we have @{term "w\<^sub>2
|
|
1432 |
\<in> LV r\<^sub>1 s"} and can use the induction hypothesis to infer
|
|
1433 |
@{term "w\<^sub>1 :\<sqsubseteq>val w\<^sub>2"}. Because @{term
|
|
1434 |
"w\<^sub>1"} and @{term "w\<^sub>2"} have the same underlying string
|
|
1435 |
\<open>s\<close>, we can conclude with @{term "Left w\<^sub>1
|
|
1436 |
:\<sqsubseteq>val Left w\<^sub>2"} using
|
|
1437 |
Proposition~\ref{ordintros}\textit{(2)}.\smallskip
|
|
1438 |
|
|
1439 |
\item[$\bullet$] Case \<open>P+R\<close> with @{term "s \<in> (ALT r\<^sub>1 r\<^sub>2)
|
|
1440 |
\<rightarrow> (Right w\<^sub>1)"}: This case similar to the previous
|
|
1441 |
case, except that we additionally know @{term "s \<notin> L
|
|
1442 |
r\<^sub>1"}. This is needed when @{term "v\<^sub>2"} is of the form
|
|
1443 |
\mbox{@{term "Left w\<^sub>2"}}. Since \mbox{@{term "flat v\<^sub>2 = flat
|
|
1444 |
w\<^sub>2"} \<open>= s\<close>} and @{term "\<Turnstile> w\<^sub>2 :
|
|
1445 |
r\<^sub>1"}, we can derive a contradiction for \mbox{@{term "s \<notin> L
|
|
1446 |
r\<^sub>1"}} using
|
|
1447 |
Proposition~\ref{inhabs}. So also in this case \mbox{@{term "v\<^sub>1
|
|
1448 |
:\<sqsubseteq>val v\<^sub>2"}}.\smallskip
|
|
1449 |
|
|
1450 |
\item[$\bullet$] Case \<open>PS\<close> with @{term "(s\<^sub>1 @
|
|
1451 |
s\<^sub>2) \<in> (SEQ r\<^sub>1 r\<^sub>2) \<rightarrow> (Seq
|
|
1452 |
w\<^sub>1 w\<^sub>2)"}: We can assume @{term "v\<^sub>2 = Seq
|
|
1453 |
(u\<^sub>1) (u\<^sub>2)"} with @{term "\<Turnstile> u\<^sub>1 :
|
|
1454 |
r\<^sub>1"} and \mbox{@{term "\<Turnstile> u\<^sub>2 :
|
|
1455 |
r\<^sub>2"}}. We have @{term "s\<^sub>1 @ s\<^sub>2 = (flat
|
|
1456 |
u\<^sub>1) @ (flat u\<^sub>2)"}. By the side-condition of the
|
|
1457 |
\<open>PS\<close>-rule we know that either @{term "s\<^sub>1 = flat
|
|
1458 |
u\<^sub>1"} or that @{term "flat u\<^sub>1"} is a strict prefix of
|
|
1459 |
@{term "s\<^sub>1"}. In the latter case we can infer @{term
|
|
1460 |
"w\<^sub>1 :\<sqsubset>val u\<^sub>1"} by
|
|
1461 |
Proposition~\ref{ordlen}\textit{(2)} and from this @{term "v\<^sub>1
|
|
1462 |
:\<sqsubseteq>val v\<^sub>2"} by Proposition~\ref{ordintros}\textit{(5)}
|
|
1463 |
(as noted above @{term "v\<^sub>1"} and @{term "v\<^sub>2"} must have the
|
|
1464 |
same underlying string).
|
|
1465 |
In the former case we know
|
|
1466 |
@{term "u\<^sub>1 \<in> LV r\<^sub>1 s\<^sub>1"} and @{term
|
|
1467 |
"u\<^sub>2 \<in> LV r\<^sub>2 s\<^sub>2"}. With this we can use the
|
|
1468 |
induction hypotheses to infer @{term "w\<^sub>1 :\<sqsubseteq>val
|
|
1469 |
u\<^sub>1"} and @{term "w\<^sub>2 :\<sqsubseteq>val u\<^sub>2"}. By
|
|
1470 |
Proposition~\ref{ordintros}\textit{(4,5)} we can again infer
|
|
1471 |
@{term "v\<^sub>1 :\<sqsubseteq>val
|
|
1472 |
v\<^sub>2"}.
|
|
1473 |
|
|
1474 |
\end{itemize}
|
|
1475 |
|
|
1476 |
\noindent The case for \<open>P\<star>\<close> is similar to the \<open>PS\<close>-case and omitted.\qed
|
|
1477 |
\end{proof}
|
|
1478 |
|
|
1479 |
\noindent This theorem shows that our \<open>POSIX\<close> value for a
|
|
1480 |
regular expression \<open>r\<close> and string @{term s} is in fact a
|
|
1481 |
minimal element of the values in \<open>LV r s\<close>. By
|
|
1482 |
Proposition~\ref{ordlen}\textit{(2)} we also know that any value in
|
|
1483 |
\<open>LV r s'\<close>, with @{term "s'"} being a strict prefix, cannot be
|
|
1484 |
smaller than \<open>v\<^sub>1\<close>. The next theorem shows the
|
|
1485 |
opposite---namely any minimal element in @{term "LV r s"} must be a
|
|
1486 |
\<open>POSIX\<close> value. This can be established by induction on \<open>r\<close>, but the proof can be drastically simplified by using the fact
|
|
1487 |
from the previous section about the existence of a \<open>POSIX\<close> value
|
|
1488 |
whenever a string @{term "s \<in> L r"}.
|
|
1489 |
|
|
1490 |
|
|
1491 |
\begin{theorem}
|
|
1492 |
@{thm [mode=IfThen] PosOrd_Posix[where ?v1.0="v\<^sub>1"]}
|
|
1493 |
\end{theorem}
|
|
1494 |
|
|
1495 |
\begin{proof}
|
|
1496 |
If @{thm (prem 1) PosOrd_Posix[where ?v1.0="v\<^sub>1"]} then
|
|
1497 |
@{term "s \<in> L r"} by Proposition~\ref{inhabs}. Hence by Theorem~\ref{lexercorrect}(2)
|
|
1498 |
there exists a
|
|
1499 |
\<open>POSIX\<close> value @{term "v\<^sub>P"} with @{term "s \<in> r \<rightarrow> v\<^sub>P"}
|
|
1500 |
and by Lemma~\ref{LVposix} we also have \mbox{@{term "v\<^sub>P \<in> LV r s"}}.
|
|
1501 |
By Theorem~\ref{orderone} we therefore have
|
|
1502 |
@{term "v\<^sub>P :\<sqsubseteq>val v\<^sub>1"}. If @{term "v\<^sub>P = v\<^sub>1"} then
|
|
1503 |
we are done. Otherwise we have @{term "v\<^sub>P :\<sqsubset>val v\<^sub>1"}, which
|
|
1504 |
however contradicts the second assumption about @{term "v\<^sub>1"} being the smallest
|
|
1505 |
element in @{term "LV r s"}. So we are done in this case too.\qed
|
|
1506 |
\end{proof}
|
|
1507 |
|
|
1508 |
\noindent
|
|
1509 |
From this we can also show
|
|
1510 |
that if @{term "LV r s"} is non-empty (or equivalently @{term "s \<in> L r"}) then
|
|
1511 |
it has a unique minimal element:
|
|
1512 |
|
|
1513 |
\begin{corollary}
|
|
1514 |
@{thm [mode=IfThen] Least_existence1}
|
|
1515 |
\end{corollary}
|
|
1516 |
|
|
1517 |
|
|
1518 |
|
|
1519 |
\noindent To sum up, we have shown that the (unique) minimal elements
|
|
1520 |
of the ordering by Okui and Suzuki are exactly the \<open>POSIX\<close>
|
|
1521 |
values we defined inductively in Section~\ref{posixsec}. This provides
|
|
1522 |
an independent confirmation that our ternary relation formalises the
|
|
1523 |
informal POSIX rules.
|
|
1524 |
|
|
1525 |
\<close>
|
|
1526 |
|
|
1527 |
section \<open>Bitcoded Lexing\<close>
|
|
1528 |
|
|
1529 |
|
|
1530 |
|
|
1531 |
|
|
1532 |
text \<open>
|
|
1533 |
|
|
1534 |
Incremental calculation of the value. To simplify the proof we first define the function
|
|
1535 |
@{const flex} which calculates the ``iterated'' injection function. With this we can
|
|
1536 |
rewrite the lexer as
|
|
1537 |
|
|
1538 |
\begin{center}
|
|
1539 |
@{thm lexer_flex}
|
|
1540 |
\end{center}
|
|
1541 |
|
|
1542 |
|
|
1543 |
\<close>
|
|
1544 |
|
|
1545 |
section \<open>Optimisations\<close>
|
|
1546 |
|
|
1547 |
text \<open>
|
|
1548 |
|
|
1549 |
Derivatives as calculated by \Brz's method are usually more complex
|
|
1550 |
regular expressions than the initial one; the result is that the
|
|
1551 |
derivative-based matching and lexing algorithms are often abysmally slow.
|
|
1552 |
However, various optimisations are possible, such as the simplifications
|
|
1553 |
of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term "SEQ ONE r"} and
|
|
1554 |
@{term "SEQ r ONE"} to @{term r}. These simplifications can speed up the
|
|
1555 |
algorithms considerably, as noted in \cite{Sulzmann2014}. One of the
|
|
1556 |
advantages of having a simple specification and correctness proof is that
|
|
1557 |
the latter can be refined to prove the correctness of such simplification
|
|
1558 |
steps. While the simplification of regular expressions according to
|
|
1559 |
rules like
|
|
1560 |
|
|
1561 |
\begin{equation}\label{Simpl}
|
|
1562 |
\begin{array}{lcllcllcllcl}
|
|
1563 |
@{term "ALT ZERO r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
|
|
1564 |
@{term "ALT r ZERO"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
|
|
1565 |
@{term "SEQ ONE r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
|
|
1566 |
@{term "SEQ r ONE"} & \<open>\<Rightarrow>\<close> & @{term r}
|
|
1567 |
\end{array}
|
|
1568 |
\end{equation}
|
|
1569 |
|
|
1570 |
\noindent is well understood, there is an obstacle with the POSIX value
|
|
1571 |
calculation algorithm by Sulzmann and Lu: if we build a derivative regular
|
|
1572 |
expression and then simplify it, we will calculate a POSIX value for this
|
|
1573 |
simplified derivative regular expression, \emph{not} for the original (unsimplified)
|
|
1574 |
derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by
|
|
1575 |
not just calculating a simplified regular expression, but also calculating
|
|
1576 |
a \emph{rectification function} that ``repairs'' the incorrect value.
|
|
1577 |
|
|
1578 |
The rectification functions can be (slightly clumsily) implemented in
|
|
1579 |
Isabelle/HOL as follows using some auxiliary functions:
|
|
1580 |
|
|
1581 |
\begin{center}
|
|
1582 |
\begin{tabular}{lcl}
|
|
1583 |
@{thm (lhs) F_RIGHT.simps(1)} & $\dn$ & \<open>Right (f v)\<close>\\
|
|
1584 |
@{thm (lhs) F_LEFT.simps(1)} & $\dn$ & \<open>Left (f v)\<close>\\
|
|
1585 |
|
|
1586 |
@{thm (lhs) F_ALT.simps(1)} & $\dn$ & \<open>Right (f\<^sub>2 v)\<close>\\
|
|
1587 |
@{thm (lhs) F_ALT.simps(2)} & $\dn$ & \<open>Left (f\<^sub>1 v)\<close>\\
|
|
1588 |
|
|
1589 |
@{thm (lhs) F_SEQ1.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 ()) (f\<^sub>2 v)\<close>\\
|
|
1590 |
@{thm (lhs) F_SEQ2.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v) (f\<^sub>2 ())\<close>\\
|
|
1591 |
@{thm (lhs) F_SEQ.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)\<close>\medskip\\
|
|
1592 |
%\end{tabular}
|
|
1593 |
%
|
|
1594 |
%\begin{tabular}{lcl}
|
|
1595 |
@{term "simp_ALT (ZERO, DUMMY) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_RIGHT f\<^sub>2)"}\\
|
|
1596 |
@{term "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, DUMMY)"} & $\dn$ & @{term "(r\<^sub>1, F_LEFT f\<^sub>1)"}\\
|
|
1597 |
@{term "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"}\\
|
|
1598 |
@{term "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"}\\
|
|
1599 |
@{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"}\\
|
|
1600 |
@{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"}\\
|
|
1601 |
\end{tabular}
|
|
1602 |
\end{center}
|
|
1603 |
|
|
1604 |
\noindent
|
|
1605 |
The functions \<open>simp\<^bsub>Alt\<^esub>\<close> and \<open>simp\<^bsub>Seq\<^esub>\<close> encode the simplification rules
|
|
1606 |
in \eqref{Simpl} and compose the rectification functions (simplifications can occur
|
|
1607 |
deep inside the regular expression). The main simplification function is then
|
|
1608 |
|
|
1609 |
\begin{center}
|
|
1610 |
\begin{tabular}{lcl}
|
|
1611 |
@{term "simp (ALT r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_ALT (simp r\<^sub>1) (simp r\<^sub>2)"}\\
|
|
1612 |
@{term "simp (SEQ r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_SEQ (simp r\<^sub>1) (simp r\<^sub>2)"}\\
|
|
1613 |
@{term "simp r"} & $\dn$ & @{term "(r, id)"}\\
|
|
1614 |
\end{tabular}
|
|
1615 |
\end{center}
|
|
1616 |
|
|
1617 |
\noindent where @{term "id"} stands for the identity function. The
|
|
1618 |
function @{const simp} returns a simplified regular expression and a corresponding
|
|
1619 |
rectification function. Note that we do not simplify under stars: this
|
|
1620 |
seems to slow down the algorithm, rather than speed it up. The optimised
|
|
1621 |
lexer is then given by the clauses:
|
|
1622 |
|
|
1623 |
\begin{center}
|
|
1624 |
\begin{tabular}{lcl}
|
|
1625 |
@{thm (lhs) slexer.simps(1)} & $\dn$ & @{thm (rhs) slexer.simps(1)}\\
|
|
1626 |
@{thm (lhs) slexer.simps(2)} & $\dn$ &
|
|
1627 |
\<open>let (r\<^sub>s, f\<^sub>r) = simp (r \<close>$\backslash$\<open> c) in\<close>\\
|
|
1628 |
& & \<open>case\<close> @{term "slexer r\<^sub>s s"} \<open>of\<close>\\
|
|
1629 |
& & \phantom{$|$} @{term "None"} \<open>\<Rightarrow>\<close> @{term None}\\
|
|
1630 |
& & $|$ @{term "Some v"} \<open>\<Rightarrow>\<close> \<open>Some (inj r c (f\<^sub>r v))\<close>
|
|
1631 |
\end{tabular}
|
|
1632 |
\end{center}
|
|
1633 |
|
|
1634 |
\noindent
|
|
1635 |
In the second clause we first calculate the derivative @{term "der c r"}
|
|
1636 |
and then simpli
|
|
1637 |
|
|
1638 |
text \<open>
|
|
1639 |
|
|
1640 |
Incremental calculation of the value. To simplify the proof we first define the function
|
|
1641 |
@{const flex} which calculates the ``iterated'' injection function. With this we can
|
|
1642 |
rewrite the lexer as
|
|
1643 |
|
|
1644 |
\begin{center}
|
|
1645 |
@{thm lexer_flex}
|
|
1646 |
\end{center}
|
|
1647 |
|
|
1648 |
\begin{center}
|
|
1649 |
\begin{tabular}{lcl}
|
|
1650 |
@{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
|
|
1651 |
@{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
|
|
1652 |
@{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
|
|
1653 |
@{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
|
|
1654 |
@{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
|
|
1655 |
@{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
|
|
1656 |
@{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
|
|
1657 |
\end{tabular}
|
|
1658 |
\end{center}
|
|
1659 |
|
|
1660 |
\begin{center}
|
|
1661 |
\begin{tabular}{lcl}
|
|
1662 |
@{term areg} & $::=$ & @{term "AZERO"}\\
|
|
1663 |
& $\mid$ & @{term "AONE bs"}\\
|
|
1664 |
& $\mid$ & @{term "ACHAR bs c"}\\
|
|
1665 |
& $\mid$ & @{term "AALT bs r1 r2"}\\
|
|
1666 |
& $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
|
|
1667 |
& $\mid$ & @{term "ASTAR bs r"}
|
|
1668 |
\end{tabular}
|
|
1669 |
\end{center}
|
|
1670 |
|
|
1671 |
|
|
1672 |
\begin{center}
|
|
1673 |
\begin{tabular}{lcl}
|
|
1674 |
@{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\
|
|
1675 |
@{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\
|
|
1676 |
@{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\
|
|
1677 |
@{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1678 |
@{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1679 |
@{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\
|
|
1680 |
\end{tabular}
|
|
1681 |
\end{center}
|
|
1682 |
|
|
1683 |
\begin{center}
|
|
1684 |
\begin{tabular}{lcl}
|
|
1685 |
@{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\
|
|
1686 |
@{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\
|
|
1687 |
@{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\
|
|
1688 |
@{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1689 |
@{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1690 |
@{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
|
|
1691 |
\end{tabular}
|
|
1692 |
\end{center}
|
|
1693 |
|
|
1694 |
Some simple facts about erase
|
|
1695 |
|
|
1696 |
\begin{lemma}\mbox{}\\
|
|
1697 |
@{thm erase_bder}\\
|
|
1698 |
@{thm erase_intern}
|
|
1699 |
\end{lemma}
|
|
1700 |
|
|
1701 |
\begin{center}
|
|
1702 |
\begin{tabular}{lcl}
|
|
1703 |
@{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\
|
|
1704 |
@{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\
|
|
1705 |
@{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\
|
|
1706 |
@{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1707 |
@{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1708 |
@{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
|
|
1709 |
|
|
1710 |
% \end{tabular}
|
|
1711 |
% \end{center}
|
|
1712 |
|
|
1713 |
% \begin{center}
|
|
1714 |
% \begin{tabular}{lcl}
|
|
1715 |
|
|
1716 |
@{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\
|
|
1717 |
@{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\
|
|
1718 |
@{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\
|
|
1719 |
@{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1720 |
@{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1721 |
@{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)}
|
|
1722 |
\end{tabular}
|
|
1723 |
\end{center}
|
|
1724 |
|
|
1725 |
|
|
1726 |
\begin{center}
|
|
1727 |
\begin{tabular}{lcl}
|
|
1728 |
@{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\
|
|
1729 |
@{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1730 |
@{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
1731 |
@{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\
|
|
1732 |
\end{tabular}
|
|
1733 |
\end{center}
|
|
1734 |
|
|
1735 |
|
|
1736 |
@{thm [mode=IfThen] bder_retrieve}
|
|
1737 |
|
|
1738 |
By induction on \<open>r\<close>
|
|
1739 |
|
|
1740 |
\begin{theorem}[Main Lemma]\mbox{}\\
|
|
1741 |
@{thm [mode=IfThen] MAIN_decode}
|
|
1742 |
\end{theorem}
|
|
1743 |
|
|
1744 |
\noindent
|
|
1745 |
Definition of the bitcoded lexer
|
|
1746 |
|
|
1747 |
@{thm blexer_def}
|
|
1748 |
|
|
1749 |
|
|
1750 |
\begin{theorem}
|
|
1751 |
@{thm blexer_correctness}
|
|
1752 |
\end{theorem}
|
|
1753 |
|
|
1754 |
\<close>
|
|
1755 |
|
|
1756 |
section \<open>Optimisations\<close>
|
|
1757 |
|
|
1758 |
text \<open>
|
|
1759 |
|
|
1760 |
Derivatives as calculated by \Brz's method are usually more complex
|
|
1761 |
regular expressions than the initial one; the result is that the
|
|
1762 |
derivative-based matching and lexing algorithms are often abysmally slow.
|
|
1763 |
However, various optimisations are possible, such as the simplifications
|
|
1764 |
of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term "SEQ ONE r"} and
|
|
1765 |
@{term "SEQ r ONE"} to @{term r}. These simplifications can speed up the
|
|
1766 |
algorithms considerably, as noted in \cite{Sulzmann2014}. One of the
|
|
1767 |
advantages of having a simple specification and correctness proof is that
|
|
1768 |
the latter can be refined to prove the correctness of such simplification
|
|
1769 |
steps. While the simplification of regular expressions according to
|
|
1770 |
rules like
|
|
1771 |
|
|
1772 |
\begin{equation}\label{Simpl}
|
|
1773 |
\begin{array}{lcllcllcllcl}
|
|
1774 |
@{term "ALT ZERO r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
|
|
1775 |
@{term "ALT r ZERO"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
|
|
1776 |
@{term "SEQ ONE r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
|
|
1777 |
@{term "SEQ r ONE"} & \<open>\<Rightarrow>\<close> & @{term r}
|
|
1778 |
\end{array}
|
|
1779 |
\end{equation}
|
|
1780 |
|
|
1781 |
\noindent is well understood, there is an obstacle with the POSIX value
|
|
1782 |
calculation algorithm by Sulzmann and Lu: if we build a derivative regular
|
|
1783 |
expression and then simplify it, we will calculate a POSIX value for this
|
|
1784 |
simplified derivative regular expression, \emph{not} for the original (unsimplified)
|
|
1785 |
derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by
|
|
1786 |
not just calculating a simplified regular expression, but also calculating
|
|
1787 |
a \emph{rectification function} that ``repairs'' the incorrect value.
|
|
1788 |
|
|
1789 |
The rectification functions can be (slightly clumsily) implemented in
|
|
1790 |
Isabelle/HOL as follows using some auxiliary functions:
|
|
1791 |
|
|
1792 |
\begin{center}
|
|
1793 |
\begin{tabular}{lcl}
|
|
1794 |
@{thm (lhs) F_RIGHT.simps(1)} & $\dn$ & \<open>Right (f v)\<close>\\
|
|
1795 |
@{thm (lhs) F_LEFT.simps(1)} & $\dn$ & \<open>Left (f v)\<close>\\
|
|
1796 |
|
|
1797 |
@{thm (lhs) F_ALT.simps(1)} & $\dn$ & \<open>Right (f\<^sub>2 v)\<close>\\
|
|
1798 |
@{thm (lhs) F_ALT.simps(2)} & $\dn$ & \<open>Left (f\<^sub>1 v)\<close>\\
|
|
1799 |
|
|
1800 |
@{thm (lhs) F_SEQ1.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 ()) (f\<^sub>2 v)\<close>\\
|
|
1801 |
@{thm (lhs) F_SEQ2.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v) (f\<^sub>2 ())\<close>\\
|
|
1802 |
@{thm (lhs) F_SEQ.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)\<close>\medskip\\
|
|
1803 |
%\end{tabular}
|
|
1804 |
%
|
|
1805 |
%\begin{tabular}{lcl}
|
|
1806 |
@{term "simp_ALT (ZERO, DUMMY) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_RIGHT f\<^sub>2)"}\\
|
|
1807 |
@{term "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, DUMMY)"} & $\dn$ & @{term "(r\<^sub>1, F_LEFT f\<^sub>1)"}\\
|
|
1808 |
@{term "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"}\\
|
|
1809 |
@{term "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"}\\
|
|
1810 |
@{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"}\\
|
|
1811 |
@{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"}\\
|
|
1812 |
\end{tabular}
|
|
1813 |
\end{center}
|
|
1814 |
|
|
1815 |
\noindent
|
|
1816 |
The functions \<open>simp\<^bsub>Alt\<^esub>\<close> and \<open>simp\<^bsub>Seq\<^esub>\<close> encode the simplification rules
|
|
1817 |
in \eqref{Simpl} and compose the rectification functions (simplifications can occur
|
|
1818 |
deep inside the regular expression). The main simplification function is then
|
|
1819 |
|
|
1820 |
\begin{center}
|
|
1821 |
\begin{tabular}{lcl}
|
|
1822 |
@{term "simp (ALT r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_ALT (simp r\<^sub>1) (simp r\<^sub>2)"}\\
|
|
1823 |
@{term "simp (SEQ r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_SEQ (simp r\<^sub>1) (simp r\<^sub>2)"}\\
|
|
1824 |
@{term "simp r"} & $\dn$ & @{term "(r, id)"}\\
|
|
1825 |
\end{tabular}
|
|
1826 |
\end{center}
|
|
1827 |
|
|
1828 |
\noindent where @{term "id"} stands for the identity function. The
|
|
1829 |
function @{const simp} returns a simplified regular expression and a corresponding
|
|
1830 |
rectification function. Note that we do not simplify under stars: this
|
|
1831 |
seems to slow down the algorithm, rather than speed it up. The optimised
|
|
1832 |
lexer is then given by the clauses:
|
|
1833 |
|
|
1834 |
\begin{center}
|
|
1835 |
\begin{tabular}{lcl}
|
|
1836 |
@{thm (lhs) slexer.simps(1)} & $\dn$ & @{thm (rhs) slexer.simps(1)}\\
|
|
1837 |
@{thm (lhs) slexer.simps(2)} & $\dn$ &
|
|
1838 |
\<open>let (r\<^sub>s, f\<^sub>r) = simp (r \<close>$\backslash$\<open> c) in\<close>\\
|
|
1839 |
& & \<open>case\<close> @{term "slexer r\<^sub>s s"} \<open>of\<close>\\
|
|
1840 |
& & \phantom{$|$} @{term "None"} \<open>\<Rightarrow>\<close> @{term None}\\
|
|
1841 |
& & $|$ @{term "Some v"} \<open>\<Rightarrow>\<close> \<open>Some (inj r c (f\<^sub>r v))\<close>
|
|
1842 |
\end{tabular}
|
|
1843 |
\end{center}
|
|
1844 |
|
|
1845 |
\noindent
|
|
1846 |
In the second clause we first calculate the derivative @{term "der c r"}
|
|
1847 |
and then simplify the result. This gives us a simplified derivative
|
|
1848 |
\<open>r\<^sub>s\<close> and a rectification function \<open>f\<^sub>r\<close>. The lexer
|
|
1849 |
is then recursively called with the simplified derivative, but before
|
|
1850 |
we inject the character @{term c} into the value @{term v}, we need to rectify
|
|
1851 |
@{term v} (that is construct @{term "f\<^sub>r v"}). Before we can establish the correctness
|
|
1852 |
of @{term "slexer"}, we need to show that simplification preserves the language
|
|
1853 |
and simplification preserves our POSIX relation once the value is rectified
|
|
1854 |
(recall @{const "simp"} generates a (regular expression, rectification function) pair):
|
|
1855 |
|
|
1856 |
\begin{lemma}\mbox{}\smallskip\\\label{slexeraux}
|
|
1857 |
\begin{tabular}{ll}
|
|
1858 |
(1) & @{thm L_fst_simp[symmetric]}\\
|
|
1859 |
(2) & @{thm[mode=IfThen] Posix_simp}
|
|
1860 |
\end{tabular}
|
|
1861 |
\end{lemma}
|
|
1862 |
|
|
1863 |
\begin{proof} Both are by induction on \<open>r\<close>. There is no
|
|
1864 |
interesting case for the first statement. For the second statement,
|
|
1865 |
of interest are the @{term "r = ALT r\<^sub>1 r\<^sub>2"} and @{term "r = SEQ r\<^sub>1
|
|
1866 |
r\<^sub>2"} cases. In each case we have to analyse four subcases whether
|
|
1867 |
@{term "fst (simp r\<^sub>1)"} and @{term "fst (simp r\<^sub>2)"} equals @{const
|
|
1868 |
ZERO} (respectively @{const ONE}). For example for @{term "r = ALT
|
|
1869 |
r\<^sub>1 r\<^sub>2"}, consider the subcase @{term "fst (simp r\<^sub>1) = ZERO"} and
|
|
1870 |
@{term "fst (simp r\<^sub>2) \<noteq> ZERO"}. By assumption we know @{term "s \<in>
|
|
1871 |
fst (simp (ALT r\<^sub>1 r\<^sub>2)) \<rightarrow> v"}. From this we can infer @{term "s \<in> fst (simp r\<^sub>2) \<rightarrow> v"}
|
|
1872 |
and by IH also (*) @{term "s \<in> r\<^sub>2 \<rightarrow> (snd (simp r\<^sub>2) v)"}. Given @{term "fst (simp r\<^sub>1) = ZERO"}
|
|
1873 |
we know @{term "L (fst (simp r\<^sub>1)) = {}"}. By the first statement
|
|
1874 |
@{term "L r\<^sub>1"} is the empty set, meaning (**) @{term "s \<notin> L r\<^sub>1"}.
|
|
1875 |
Taking (*) and (**) together gives by the \mbox{\<open>P+R\<close>}-rule
|
|
1876 |
@{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> Right (snd (simp r\<^sub>2) v)"}. In turn this
|
|
1877 |
gives @{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> snd (simp (ALT r\<^sub>1 r\<^sub>2)) v"} as we need to show.
|
|
1878 |
The other cases are similar.\qed
|
|
1879 |
\end{proof}
|
|
1880 |
|
|
1881 |
\noindent We can now prove relatively straightforwardly that the
|
|
1882 |
optimised lexer produces the expected result:
|
|
1883 |
|
|
1884 |
\begin{theorem}
|
|
1885 |
@{thm slexer_correctness}
|
|
1886 |
\end{theorem}
|
|
1887 |
|
|
1888 |
\begin{proof} By induction on @{term s} generalising over @{term
|
|
1889 |
r}. The case @{term "[]"} is trivial. For the cons-case suppose the
|
|
1890 |
string is of the form @{term "c # s"}. By induction hypothesis we
|
|
1891 |
know @{term "slexer r s = lexer r s"} holds for all @{term r} (in
|
|
1892 |
particular for @{term "r"} being the derivative @{term "der c
|
|
1893 |
r"}). Let @{term "r\<^sub>s"} be the simplified derivative regular expression, that is @{term
|
|
1894 |
"fst (simp (der c r))"}, and @{term "f\<^sub>r"} be the rectification
|
|
1895 |
function, that is @{term "snd (simp (der c r))"}. We distinguish the cases
|
|
1896 |
whether (*) @{term "s \<in> L (der c r)"} or not. In the first case we
|
|
1897 |
have by Theorem~\ref{lexercorrect}(2) a value @{term "v"} so that @{term
|
|
1898 |
"lexer (der c r) s = Some v"} and @{term "s \<in> der c r \<rightarrow> v"} hold.
|
|
1899 |
By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that @{term "s
|
|
1900 |
\<in> L r\<^sub>s"} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that
|
|
1901 |
there exists a @{term "v'"} with @{term "lexer r\<^sub>s s = Some v'"} and
|
|
1902 |
@{term "s \<in> r\<^sub>s \<rightarrow> v'"}. From the latter we know by
|
|
1903 |
Lemma~\ref{slexeraux}(2) that @{term "s \<in> der c r \<rightarrow> (f\<^sub>r v')"} holds.
|
|
1904 |
By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we
|
|
1905 |
can infer that @{term v} is equal to @{term "f\<^sub>r v'"}---that is the
|
|
1906 |
rectification function applied to @{term "v'"}
|
|
1907 |
produces the original @{term "v"}. Now the case follows by the
|
|
1908 |
definitions of @{const lexer} and @{const slexer}.
|
|
1909 |
|
|
1910 |
In the second case where @{term "s \<notin> L (der c r)"} we have that
|
|
1911 |
@{term "lexer (der c r) s = None"} by Theorem~\ref{lexercorrect}(1). We
|
|
1912 |
also know by Lemma~\ref{slexeraux}(1) that @{term "s \<notin> L r\<^sub>s"}. Hence
|
|
1913 |
@{term "lexer r\<^sub>s s = None"} by Theorem~\ref{lexercorrect}(1) and
|
|
1914 |
by IH then also @{term "slexer r\<^sub>s s = None"}. With this we can
|
|
1915 |
conclude in this case too.\qed
|
|
1916 |
|
|
1917 |
\end{proof}
|
|
1918 |
|
|
1919 |
\<close>
|
|
1920 |
fy the result. This gives us a simplified derivative
|
|
1921 |
\<open>r\<^sub>s\<close> and a rectification function \<open>f\<^sub>r\<close>. The lexer
|
|
1922 |
is then recursively called with the simplified derivative, but before
|
|
1923 |
we inject the character @{term c} into the value @{term v}, we need to rectify
|
|
1924 |
@{term v} (that is construct @{term "f\<^sub>r v"}). Before we can establish the correctness
|
|
1925 |
of @{term "slexer"}, we need to show that simplification preserves the language
|
|
1926 |
and simplification preserves our POSIX relation once the value is rectified
|
|
1927 |
(recall @{const "simp"} generates a (regular expression, rectification function) pair):
|
|
1928 |
|
|
1929 |
\begin{lemma}\mbox{}\smallskip\\\label{slexeraux}
|
|
1930 |
\begin{tabular}{ll}
|
|
1931 |
(1) & @{thm L_fst_simp[symmetric]}\\
|
|
1932 |
(2) & @{thm[mode=IfThen] Posix_simp}
|
|
1933 |
\end{tabular}
|
|
1934 |
\end{lemma}
|
|
1935 |
|
|
1936 |
\begin{proof} Both are by induction on \<open>r\<close>. There is no
|
|
1937 |
interesting case for the first statement. For the second statement,
|
|
1938 |
of interest are the @{term "r = ALT r\<^sub>1 r\<^sub>2"} and @{term "r = SEQ r\<^sub>1
|
|
1939 |
r\<^sub>2"} cases. In each case we have to analyse four subcases whether
|
|
1940 |
@{term "fst (simp r\<^sub>1)"} and @{term "fst (simp r\<^sub>2)"} equals @{const
|
|
1941 |
ZERO} (respectively @{const ONE}). For example for @{term "r = ALT
|
|
1942 |
r\<^sub>1 r\<^sub>2"}, consider the subcase @{term "fst (simp r\<^sub>1) = ZERO"} and
|
|
1943 |
@{term "fst (simp r\<^sub>2) \<noteq> ZERO"}. By assumption we know @{term "s \<in>
|
|
1944 |
fst (simp (ALT r\<^sub>1 r\<^sub>2)) \<rightarrow> v"}. From this we can infer @{term "s \<in> fst (simp r\<^sub>2) \<rightarrow> v"}
|
|
1945 |
and by IH also (*) @{term "s \<in> r\<^sub>2 \<rightarrow> (snd (simp r\<^sub>2) v)"}. Given @{term "fst (simp r\<^sub>1) = ZERO"}
|
|
1946 |
we know @{term "L (fst (simp r\<^sub>1)) = {}"}. By the first statement
|
|
1947 |
@{term "L r\<^sub>1"} is the empty set, meaning (**) @{term "s \<notin> L r\<^sub>1"}.
|
|
1948 |
Taking (*) and (**) together gives by the \mbox{\<open>P+R\<close>}-rule
|
|
1949 |
@{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> Right (snd (simp r\<^sub>2) v)"}. In turn this
|
|
1950 |
gives @{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> snd (simp (ALT r\<^sub>1 r\<^sub>2)) v"} as we need to show.
|
|
1951 |
The other cases are similar.\qed
|
|
1952 |
\end{proof}
|
|
1953 |
|
|
1954 |
\noindent We can now prove relatively straightforwardly that the
|
|
1955 |
optimised lexer produces the expected result:
|
|
1956 |
|
|
1957 |
\begin{theorem}
|
|
1958 |
@{thm slexer_correctness}
|
|
1959 |
\end{theorem}
|
|
1960 |
|
|
1961 |
\begin{proof} By induction on @{term s} generalising over @{term
|
|
1962 |
r}. The case @{term "[]"} is trivial. For the cons-case suppose the
|
|
1963 |
string is of the form @{term "c # s"}. By induction hypothesis we
|
|
1964 |
know @{term "slexer r s = lexer r s"} holds for all @{term r} (in
|
|
1965 |
particular for @{term "r"} being the derivative @{term "der c
|
|
1966 |
r"}). Let @{term "r\<^sub>s"} be the simplified derivative regular expression, that is @{term
|
|
1967 |
"fst (simp (der c r))"}, and @{term "f\<^sub>r"} be the rectification
|
|
1968 |
function, that is @{term "snd (simp (der c r))"}. We distinguish the cases
|
|
1969 |
whether (*) @{term "s \<in> L (der c r)"} or not. In the first case we
|
|
1970 |
have by Theorem~\ref{lexercorrect}(2) a value @{term "v"} so that @{term
|
|
1971 |
"lexer (der c r) s = Some v"} and @{term "s \<in> der c r \<rightarrow> v"} hold.
|
|
1972 |
By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that @{term "s
|
|
1973 |
\<in> L r\<^sub>s"} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that
|
|
1974 |
there exists a @{term "v'"} with @{term "lexer r\<^sub>s s = Some v'"} and
|
|
1975 |
@{term "s \<in> r\<^sub>s \<rightarrow> v'"}. From the latter we know by
|
|
1976 |
Lemma~\ref{slexeraux}(2) that @{term "s \<in> der c r \<rightarrow> (f\<^sub>r v')"} holds.
|
|
1977 |
By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we
|
|
1978 |
can infer that @{term v} is equal to @{term "f\<^sub>r v'"}---that is the
|
|
1979 |
rectification function applied to @{term "v'"}
|
|
1980 |
produces the original @{term "v"}. Now the case follows by the
|
|
1981 |
definitions of @{const lexer} and @{const slexer}.
|
|
1982 |
|
|
1983 |
In the second case where @{term "s \<notin> L (der c r)"} we have that
|
|
1984 |
@{term "lexer (der c r) s = None"} by Theorem~\ref{lexercorrect}(1). We
|
|
1985 |
also know by Lemma~\ref{slexeraux}(1) that @{term "s \<notin> L r\<^sub>s"}. Hence
|
|
1986 |
@{term "lexer r\<^sub>s s = None"} by Theorem~\ref{lexercorrect}(1) and
|
|
1987 |
by IH then also @{term "slexer r\<^sub>s s = None"}. With this we can
|
|
1988 |
conclude in this case too.\qed
|
|
1989 |
|
|
1990 |
\end{proof}
|
|
1991 |
|
|
1992 |
\<close>
|
|
1993 |
|
|
1994 |
|
|
1995 |
section \<open>HERE\<close>
|
|
1996 |
|
|
1997 |
text \<open>
|
|
1998 |
|
|
1999 |
\begin{lemma}
|
|
2000 |
@{thm [mode=IfThen] bder_retrieve}
|
|
2001 |
\end{lemma}
|
|
2002 |
|
|
2003 |
\begin{proof}
|
|
2004 |
By induction on the definition of @{term "erase r"}. The cases for rule 1) and 2) are
|
|
2005 |
straightforward as @{term "der c ZERO"} and @{term "der c ONE"} are both equal to
|
|
2006 |
@{term ZERO}. This means @{term "\<Turnstile> v : ZERO"} cannot hold. Similarly in case of rule 3)
|
|
2007 |
where @{term r} is of the form @{term "ACHAR d"} with @{term "c = d"}. Then by assumption
|
|
2008 |
we know @{term "\<Turnstile> v : ONE"}, which implies @{term "v = Void"}. The equation follows by
|
|
2009 |
simplification of left- and right-hand side. In case @{term "c \<noteq> d"} we have again
|
|
2010 |
@{term "\<Turnstile> v : ZERO"}, which cannot hold.
|
|
2011 |
|
|
2012 |
For rule 4a) we have again @{term "\<Turnstile> v : ZERO"}. The property holds by IH for rule 4b).
|
|
2013 |
The induction hypothesis is
|
|
2014 |
\[
|
|
2015 |
@{term "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"}
|
|
2016 |
\]
|
|
2017 |
which is what left- and right-hand side simplify to. The slightly more interesting case
|
|
2018 |
is for 4c). By assumption we have
|
|
2019 |
@{term "\<Turnstile> v : ALT (der c (erase r\<^sub>1)) (der c (erase (AALTs bs (r\<^sub>2 # rs))))"}. This means we
|
|
2020 |
have either (*) @{term "\<Turnstile> v1 : der c (erase r\<^sub>1)"} with @{term "v = Left v1"} or
|
|
2021 |
(**) @{term "\<Turnstile> v2 : der c (erase (AALTs bs (r\<^sub>2 # rs)))"} with @{term "v = Right v2"}.
|
|
2022 |
The former case is straightforward by simplification. The second case is \ldots TBD.
|
|
2023 |
|
|
2024 |
Rule 5) TBD.
|
|
2025 |
|
|
2026 |
Finally for rule 6) the reasoning is as follows: By assumption we have
|
|
2027 |
@{term "\<Turnstile> v : SEQ (der c (erase r)) (STAR (erase r))"}. This means we also have
|
|
2028 |
@{term "v = Seq v1 v2"}, @{term "\<Turnstile> v1 : der c (erase r)"} and @{term "v2 = Stars vs"}.
|
|
2029 |
We want to prove
|
|
2030 |
\begin{align}
|
|
2031 |
& @{term "retrieve (ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)) v"}\\
|
|
2032 |
&= @{term "retrieve (ASTAR bs r) (injval (STAR (erase r)) c v)"}
|
|
2033 |
\end{align}
|
|
2034 |
The right-hand side @{term inj}-expression is equal to
|
|
2035 |
@{term "Stars (injval (erase r) c v1 # vs)"}, which means the @{term retrieve}-expression
|
|
2036 |
simplifies to
|
|
2037 |
\[
|
|
2038 |
@{term "bs @ [Z] @ retrieve r (injval (erase r) c v1) @ retrieve (ASTAR [] r) (Stars vs)"}
|
|
2039 |
\]
|
|
2040 |
The left-hand side (3) above simplifies to
|
|
2041 |
\[
|
|
2042 |
@{term "bs @ retrieve (fuse [Z] (bder c r)) v1 @ retrieve (ASTAR [] r) (Stars vs)"}
|
|
2043 |
\]
|
|
2044 |
We can move out the @{term "fuse [Z]"} and then use the IH to show that left-hand side
|
|
2045 |
and right-hand side are equal. This completes the proof.
|
|
2046 |
\end{proof}
|
|
2047 |
|
|
2048 |
|
|
2049 |
|
|
2050 |
\bibliographystyle{plain}
|
|
2051 |
\bibliography{root}
|
|
2052 |
|
|
2053 |
\<close>
|
|
2054 |
(*<*)
|
|
2055 |
end
|
|
2056 |
(*>*)
|
|
2057 |
|
|
2058 |
(*
|
|
2059 |
|
|
2060 |
\begin{center}
|
|
2061 |
\begin{tabular}{lcl}
|
|
2062 |
@{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
|
|
2063 |
@{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
|
|
2064 |
@{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
|
|
2065 |
@{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
|
|
2066 |
@{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
|
|
2067 |
@{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
|
|
2068 |
@{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
|
|
2069 |
\end{tabular}
|
|
2070 |
\end{center}
|
|
2071 |
|
|
2072 |
\begin{center}
|
|
2073 |
\begin{tabular}{lcl}
|
|
2074 |
@{term areg} & $::=$ & @{term "AZERO"}\\
|
|
2075 |
& $\mid$ & @{term "AONE bs"}\\
|
|
2076 |
& $\mid$ & @{term "ACHAR bs c"}\\
|
|
2077 |
& $\mid$ & @{term "AALT bs r1 r2"}\\
|
|
2078 |
& $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
|
|
2079 |
& $\mid$ & @{term "ASTAR bs r"}
|
|
2080 |
\end{tabular}
|
|
2081 |
\end{center}
|
|
2082 |
|
|
2083 |
|
|
2084 |
\begin{center}
|
|
2085 |
\begin{tabular}{lcl}
|
|
2086 |
@{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\
|
|
2087 |
@{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\
|
|
2088 |
@{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\
|
|
2089 |
@{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2090 |
@{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2091 |
@{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\
|
|
2092 |
\end{tabular}
|
|
2093 |
\end{center}
|
|
2094 |
|
|
2095 |
\begin{center}
|
|
2096 |
\begin{tabular}{lcl}
|
|
2097 |
@{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\
|
|
2098 |
@{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\
|
|
2099 |
@{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\
|
|
2100 |
@{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2101 |
@{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2102 |
@{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
|
|
2103 |
\end{tabular}
|
|
2104 |
\end{center}
|
|
2105 |
|
|
2106 |
Some simple facts about erase
|
|
2107 |
|
|
2108 |
\begin{lemma}\mbox{}\\
|
|
2109 |
@{thm erase_bder}\\
|
|
2110 |
@{thm erase_intern}
|
|
2111 |
\end{lemma}
|
|
2112 |
|
|
2113 |
\begin{center}
|
|
2114 |
\begin{tabular}{lcl}
|
|
2115 |
@{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\
|
|
2116 |
@{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\
|
|
2117 |
@{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\
|
|
2118 |
@{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2119 |
@{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2120 |
@{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
|
|
2121 |
|
|
2122 |
% \end{tabular}
|
|
2123 |
% \end{center}
|
|
2124 |
|
|
2125 |
% \begin{center}
|
|
2126 |
% \begin{tabular}{lcl}
|
|
2127 |
|
|
2128 |
@{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\
|
|
2129 |
@{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\
|
|
2130 |
@{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\
|
|
2131 |
@{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2132 |
@{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2133 |
@{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)}
|
|
2134 |
\end{tabular}
|
|
2135 |
\end{center}
|
|
2136 |
|
|
2137 |
|
|
2138 |
\begin{center}
|
|
2139 |
\begin{tabular}{lcl}
|
|
2140 |
@{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\
|
|
2141 |
@{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2142 |
@{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2143 |
@{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\
|
|
2144 |
\end{tabular}
|
|
2145 |
\end{center}
|
|
2146 |
|
|
2147 |
|
|
2148 |
@{thm [mode=IfThen] bder_retrieve}
|
|
2149 |
|
|
2150 |
By induction on \<open>r\<close>
|
|
2151 |
|
|
2152 |
\begin{theorem}[Main Lemma]\mbox{}\\
|
|
2153 |
@{thm [mode=IfThen] MAIN_decode}
|
|
2154 |
\end{theorem}
|
|
2155 |
|
|
2156 |
\noindent
|
|
2157 |
Definition of the bitcoded lexer
|
|
2158 |
|
|
2159 |
@{thm blexer_def}
|
|
2160 |
|
|
2161 |
|
|
2162 |
\begin{theorem}
|
|
2163 |
@{thm blexer_correctness}
|
|
2164 |
\end{theorem}
|
|
2165 |
|
|
2166 |
|
|
2167 |
|
|
2168 |
|
|
2169 |
|
|
2170 |
\begin{center}
|
|
2171 |
\begin{tabular}{lcl}
|
|
2172 |
@{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
|
|
2173 |
@{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
|
|
2174 |
@{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
|
|
2175 |
@{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
|
|
2176 |
@{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
|
|
2177 |
@{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
|
|
2178 |
@{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
|
|
2179 |
\end{tabular}
|
|
2180 |
\end{center}
|
|
2181 |
|
|
2182 |
\begin{center}
|
|
2183 |
\begin{tabular}{lcl}
|
|
2184 |
@{term areg} & $::=$ & @{term "AZERO"}\\
|
|
2185 |
& $\mid$ & @{term "AONE bs"}\\
|
|
2186 |
& $\mid$ & @{term "ACHAR bs c"}\\
|
|
2187 |
& $\mid$ & @{term "AALT bs r1 r2"}\\
|
|
2188 |
& $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
|
|
2189 |
& $\mid$ & @{term "ASTAR bs r"}
|
|
2190 |
\end{tabular}
|
|
2191 |
\end{center}
|
|
2192 |
|
|
2193 |
|
|
2194 |
\begin{center}
|
|
2195 |
\begin{tabular}{lcl}
|
|
2196 |
@{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\
|
|
2197 |
@{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\
|
|
2198 |
@{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\
|
|
2199 |
@{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2200 |
@{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2201 |
@{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\
|
|
2202 |
\end{tabular}
|
|
2203 |
\end{center}
|
|
2204 |
|
|
2205 |
\begin{center}
|
|
2206 |
\begin{tabular}{lcl}
|
|
2207 |
@{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\
|
|
2208 |
@{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\
|
|
2209 |
@{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\
|
|
2210 |
@{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2211 |
@{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2212 |
@{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
|
|
2213 |
\end{tabular}
|
|
2214 |
\end{center}
|
|
2215 |
|
|
2216 |
Some simple facts about erase
|
|
2217 |
|
|
2218 |
\begin{lemma}\mbox{}\\
|
|
2219 |
@{thm erase_bder}\\
|
|
2220 |
@{thm erase_intern}
|
|
2221 |
\end{lemma}
|
|
2222 |
|
|
2223 |
\begin{center}
|
|
2224 |
\begin{tabular}{lcl}
|
|
2225 |
@{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\
|
|
2226 |
@{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\
|
|
2227 |
@{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\
|
|
2228 |
@{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2229 |
@{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2230 |
@{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
|
|
2231 |
|
|
2232 |
% \end{tabular}
|
|
2233 |
% \end{center}
|
|
2234 |
|
|
2235 |
% \begin{center}
|
|
2236 |
% \begin{tabular}{lcl}
|
|
2237 |
|
|
2238 |
@{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\
|
|
2239 |
@{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\
|
|
2240 |
@{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\
|
|
2241 |
@{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2242 |
@{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2243 |
@{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)}
|
|
2244 |
\end{tabular}
|
|
2245 |
\end{center}
|
|
2246 |
|
|
2247 |
|
|
2248 |
\begin{center}
|
|
2249 |
\begin{tabular}{lcl}
|
|
2250 |
@{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\
|
|
2251 |
@{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2252 |
@{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
|
|
2253 |
@{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\
|
|
2254 |
\end{tabular}
|
|
2255 |
\end{center}
|
|
2256 |
|
|
2257 |
|
|
2258 |
@{thm [mode=IfThen] bder_retrieve}
|
|
2259 |
|
|
2260 |
By induction on \<open>r\<close>
|
|
2261 |
|
|
2262 |
\begin{theorem}[Main Lemma]\mbox{}\\
|
|
2263 |
@{thm [mode=IfThen] MAIN_decode}
|
|
2264 |
\end{theorem}
|
|
2265 |
|
|
2266 |
\noindent
|
|
2267 |
Definition of the bitcoded lexer
|
|
2268 |
|
|
2269 |
@{thm blexer_def}
|
|
2270 |
|
|
2271 |
|
|
2272 |
\begin{theorem}
|
|
2273 |
@{thm blexer_correctness}
|
|
2274 |
\end{theorem}
|
|
2275 |
|
|
2276 |
\<close>
|
|
2277 |
\<close>*) |