556
|
1 |
theory RfltsRdistinctProps imports "Rsimp"
|
|
2 |
begin
|
|
3 |
|
|
4 |
|
|
5 |
|
|
6 |
lemma all_that_same_elem:
|
|
7 |
shows "\<lbrakk> a \<in> rset; rdistinct rs {a} = []\<rbrakk>
|
|
8 |
\<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct rsb rset"
|
|
9 |
apply(induct rs)
|
|
10 |
apply simp
|
|
11 |
apply(subgoal_tac "aa = a")
|
|
12 |
apply simp
|
|
13 |
by (metis empty_iff insert_iff list.discI rdistinct.simps(2))
|
|
14 |
|
|
15 |
|
|
16 |
lemma rdistinct1:
|
|
17 |
assumes "a \<in> acc"
|
|
18 |
shows "a \<notin> set (rdistinct rs acc)"
|
|
19 |
using assms
|
|
20 |
apply(induct rs arbitrary: acc a)
|
|
21 |
apply(auto)
|
|
22 |
done
|
|
23 |
|
|
24 |
|
|
25 |
lemma rdistinct_does_the_job:
|
|
26 |
shows "distinct (rdistinct rs s)"
|
|
27 |
apply(induct rs s rule: rdistinct.induct)
|
|
28 |
apply(auto simp add: rdistinct1)
|
|
29 |
done
|
|
30 |
|
|
31 |
|
|
32 |
|
|
33 |
lemma rdistinct_concat:
|
|
34 |
assumes "set rs \<subseteq> rset"
|
|
35 |
shows "rdistinct (rs @ rsa) rset = rdistinct rsa rset"
|
|
36 |
using assms
|
|
37 |
apply(induct rs)
|
|
38 |
apply simp+
|
|
39 |
done
|
|
40 |
|
|
41 |
lemma distinct_not_exist:
|
|
42 |
assumes "a \<notin> set rs"
|
|
43 |
shows "rdistinct rs rset = rdistinct rs (insert a rset)"
|
|
44 |
using assms
|
|
45 |
apply(induct rs arbitrary: rset)
|
|
46 |
apply(auto)
|
|
47 |
done
|
|
48 |
|
|
49 |
lemma rdistinct_on_distinct:
|
|
50 |
shows "distinct rs \<Longrightarrow> rdistinct rs {} = rs"
|
|
51 |
apply(induct rs)
|
|
52 |
apply simp
|
|
53 |
using distinct_not_exist by fastforce
|
|
54 |
|
|
55 |
lemma distinct_rdistinct_append:
|
|
56 |
assumes "distinct rs1" "\<forall>r \<in> set rs1. r \<notin> acc"
|
|
57 |
shows "rdistinct (rs1 @ rsa) acc = rs1 @ (rdistinct rsa (acc \<union> set rs1))"
|
|
58 |
using assms
|
|
59 |
apply(induct rs1 arbitrary: rsa acc)
|
|
60 |
apply(auto)[1]
|
|
61 |
apply(auto)[1]
|
|
62 |
apply(drule_tac x="rsa" in meta_spec)
|
|
63 |
apply(drule_tac x="{a} \<union> acc" in meta_spec)
|
|
64 |
apply(simp)
|
|
65 |
apply(drule meta_mp)
|
|
66 |
apply(auto)[1]
|
|
67 |
apply(simp)
|
|
68 |
done
|
|
69 |
|
|
70 |
|
|
71 |
lemma rdistinct_set_equality1:
|
|
72 |
shows "set (rdistinct rs acc) = set rs - acc"
|
|
73 |
apply(induct rs acc rule: rdistinct.induct)
|
|
74 |
apply(auto)
|
|
75 |
done
|
|
76 |
|
|
77 |
|
|
78 |
lemma rdistinct_set_equality:
|
|
79 |
shows "set (rdistinct rs {}) = set rs"
|
|
80 |
by (simp add: rdistinct_set_equality1)
|
|
81 |
|
|
82 |
|
|
83 |
|
|
84 |
lemma distinct_removes_last:
|
|
85 |
shows "\<lbrakk>a \<in> set as\<rbrakk>
|
|
86 |
\<Longrightarrow> rdistinct as rset = rdistinct (as @ [a]) rset"
|
|
87 |
and "rdistinct (ab # as @ [ab]) rset1 = rdistinct (ab # as) rset1"
|
|
88 |
apply(induct as arbitrary: rset ab rset1 a)
|
|
89 |
apply simp
|
|
90 |
apply simp
|
|
91 |
apply(case_tac "aa \<in> rset")
|
|
92 |
apply(case_tac "a = aa")
|
|
93 |
apply (metis append_Cons)
|
|
94 |
apply simp
|
|
95 |
apply(case_tac "a \<in> set as")
|
|
96 |
apply (metis append_Cons rdistinct.simps(2) set_ConsD)
|
|
97 |
apply(case_tac "a = aa")
|
|
98 |
prefer 2
|
|
99 |
apply simp
|
|
100 |
apply (metis append_Cons)
|
|
101 |
apply(case_tac "ab \<in> rset1")
|
|
102 |
prefer 2
|
|
103 |
apply(subgoal_tac "rdistinct (ab # (a # as) @ [ab]) rset1 =
|
|
104 |
ab # (rdistinct ((a # as) @ [ab]) (insert ab rset1))")
|
|
105 |
prefer 2
|
|
106 |
apply force
|
|
107 |
apply(simp only:)
|
|
108 |
apply(subgoal_tac "rdistinct (ab # a # as) rset1 = ab # (rdistinct (a # as) (insert ab rset1))")
|
|
109 |
apply(simp only:)
|
|
110 |
apply(subgoal_tac "rdistinct ((a # as) @ [ab]) (insert ab rset1) = rdistinct (a # as) (insert ab rset1)")
|
|
111 |
apply blast
|
|
112 |
apply(case_tac "a \<in> insert ab rset1")
|
|
113 |
apply simp
|
|
114 |
apply (metis insertI1)
|
|
115 |
apply simp
|
|
116 |
apply (meson insertI1)
|
|
117 |
apply simp
|
|
118 |
apply(subgoal_tac "rdistinct ((a # as) @ [ab]) rset1 = rdistinct (a # as) rset1")
|
|
119 |
apply simp
|
|
120 |
by (metis append_Cons insert_iff insert_is_Un rdistinct.simps(2))
|
|
121 |
|
|
122 |
|
|
123 |
lemma distinct_removes_middle:
|
|
124 |
shows "\<lbrakk>a \<in> set as\<rbrakk>
|
|
125 |
\<Longrightarrow> rdistinct (as @ as2) rset = rdistinct (as @ [a] @ as2) rset"
|
|
126 |
and "rdistinct (ab # as @ [ab] @ as3) rset1 = rdistinct (ab # as @ as3) rset1"
|
|
127 |
apply(induct as arbitrary: rset rset1 ab as2 as3 a)
|
|
128 |
apply simp
|
|
129 |
apply simp
|
|
130 |
apply(case_tac "a \<in> rset")
|
|
131 |
apply simp
|
|
132 |
apply metis
|
|
133 |
apply simp
|
|
134 |
apply (metis insertI1)
|
|
135 |
apply(case_tac "a = ab")
|
|
136 |
apply simp
|
|
137 |
apply(case_tac "ab \<in> rset")
|
|
138 |
apply simp
|
|
139 |
apply presburger
|
|
140 |
apply (meson insertI1)
|
|
141 |
apply(case_tac "a \<in> rset")
|
|
142 |
apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
|
|
143 |
apply(case_tac "ab \<in> rset")
|
|
144 |
apply simp
|
|
145 |
apply (meson insert_iff)
|
|
146 |
apply simp
|
|
147 |
by (metis insertI1)
|
|
148 |
|
|
149 |
|
|
150 |
lemma k0b:
|
|
151 |
assumes "nonalt r" "r \<noteq> RZERO"
|
|
152 |
shows "rflts [r] = [r]"
|
|
153 |
using assms
|
|
154 |
apply(case_tac r)
|
|
155 |
apply(simp_all)
|
|
156 |
done
|
|
157 |
|
|
158 |
lemma rflts_def_idiot:
|
|
159 |
shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow> rflts (a # rs) = a # rflts rs"
|
|
160 |
apply(case_tac a)
|
|
161 |
apply simp_all
|
|
162 |
done
|
|
163 |
|
|
164 |
lemma flts_middle0:
|
|
165 |
shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)"
|
|
166 |
apply(induct rsa)
|
|
167 |
apply simp
|
|
168 |
by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
|
|
169 |
|
|
170 |
|
|
171 |
lemma flts_removes0:
|
|
172 |
shows " rflts (rs @ [RZERO]) =
|
|
173 |
rflts rs"
|
|
174 |
apply(induct rs)
|
|
175 |
apply simp
|
|
176 |
by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
|
|
177 |
|
|
178 |
lemma rflts_spills_last:
|
|
179 |
shows "rflts (rs1 @ [RALTS rs]) = rflts rs1 @ rs"
|
|
180 |
apply (induct rs1 rule: rflts.induct)
|
|
181 |
apply(auto)
|
|
182 |
done
|
|
183 |
|
|
184 |
lemma flts_keeps1:
|
|
185 |
shows "rflts (rs @ [RONE]) = rflts rs @ [RONE]"
|
|
186 |
apply (induct rs rule: rflts.induct)
|
|
187 |
apply(auto)
|
|
188 |
done
|
|
189 |
|
|
190 |
lemma flts_keeps_others:
|
|
191 |
shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow>rflts (rs @ [a]) = rflts rs @ [a]"
|
|
192 |
apply(induct rs rule: rflts.induct)
|
|
193 |
apply(auto)
|
|
194 |
by (meson k0b nonalt.elims(3))
|
|
195 |
|
|
196 |
lemma spilled_alts_contained:
|
|
197 |
shows "\<lbrakk>a = RALTS rs ; a \<in> set rs1\<rbrakk> \<Longrightarrow> \<forall>r \<in> set rs. r \<in> set (rflts rs1)"
|
|
198 |
apply(induct rs1)
|
|
199 |
apply simp
|
|
200 |
apply(case_tac "a = aa")
|
|
201 |
apply simp
|
|
202 |
apply(subgoal_tac " a \<in> set rs1")
|
|
203 |
prefer 2
|
|
204 |
apply (meson set_ConsD)
|
|
205 |
apply(case_tac aa)
|
|
206 |
using rflts.simps(2) apply presburger
|
|
207 |
apply fastforce
|
|
208 |
apply fastforce
|
|
209 |
apply fastforce
|
|
210 |
apply fastforce
|
|
211 |
by fastforce
|
|
212 |
|
|
213 |
|
|
214 |
lemma rflts_def_idiot2:
|
|
215 |
shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow> a \<in> set (rflts rs)"
|
|
216 |
apply(induct rs rule: rflts.induct)
|
|
217 |
apply(auto)
|
|
218 |
done
|
|
219 |
|
|
220 |
lemma flts_append:
|
|
221 |
shows "rflts (rs1 @ rs2) = rflts rs1 @ rflts rs2"
|
|
222 |
apply(induct rs1)
|
|
223 |
apply simp
|
|
224 |
apply(case_tac a)
|
|
225 |
apply simp+
|
|
226 |
done
|
|
227 |
lemma distinct_removes_middle3:
|
|
228 |
shows "\<lbrakk>a \<in> set as\<rbrakk>
|
|
229 |
\<Longrightarrow> rdistinct (as @ a #as2) rset = rdistinct (as @ as2) rset"
|
|
230 |
using distinct_removes_middle(1) by fastforce
|
|
231 |
|
|
232 |
|
|
233 |
lemma distinct_removes_list:
|
|
234 |
shows "\<lbrakk> \<forall>r \<in> set rs. r \<in> set as\<rbrakk> \<Longrightarrow> rdistinct (as @ rs) {} = rdistinct as {}"
|
|
235 |
apply(induct rs)
|
|
236 |
apply simp+
|
|
237 |
apply(subgoal_tac "rdistinct (as @ a # rs) {} = rdistinct (as @ rs) {}")
|
|
238 |
prefer 2
|
|
239 |
apply (metis append_Cons append_Nil distinct_removes_middle(1))
|
|
240 |
by presburger
|
|
241 |
|
|
242 |
lemma last_elem_out:
|
|
243 |
shows "\<lbrakk>x \<notin> set xs; x \<notin> rset \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]"
|
|
244 |
apply(induct xs arbitrary: rset)
|
|
245 |
apply simp+
|
|
246 |
done
|
|
247 |
|
|
248 |
|
|
249 |
lemma rdistinct_concat_general:
|
|
250 |
shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
|
|
251 |
apply(induct rs1 arbitrary: rs2 rule: rev_induct)
|
|
252 |
apply simp
|
|
253 |
apply(drule_tac x = "x # rs2" in meta_spec)
|
|
254 |
apply simp
|
|
255 |
apply(case_tac "x \<in> set xs")
|
|
256 |
apply simp
|
|
257 |
|
|
258 |
apply (simp add: distinct_removes_middle3 insert_absorb)
|
|
259 |
apply simp
|
|
260 |
by (simp add: last_elem_out)
|
|
261 |
|
|
262 |
|
|
263 |
|
|
264 |
|
|
265 |
lemma distinct_once_enough:
|
|
266 |
shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}"
|
|
267 |
apply(subgoal_tac "distinct (rdistinct rs {})")
|
|
268 |
apply(subgoal_tac
|
|
269 |
" rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))")
|
|
270 |
apply(simp only:)
|
|
271 |
using rdistinct_concat_general apply blast
|
|
272 |
apply (simp add: distinct_rdistinct_append rdistinct_set_equality1)
|
|
273 |
by (simp add: rdistinct_does_the_job)
|
|
274 |
|
|
275 |
|
|
276 |
|
|
277 |
|
|
278 |
lemma distinct_removes_duplicate_flts:
|
|
279 |
shows " a \<in> set rsa
|
|
280 |
\<Longrightarrow> rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =
|
|
281 |
rdistinct (rflts (map rsimp rsa)) {}"
|
|
282 |
apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
|
|
283 |
prefer 2
|
|
284 |
apply simp
|
|
285 |
apply(induct "rsimp a")
|
|
286 |
apply simp
|
|
287 |
using flts_removes0 apply presburger
|
|
288 |
apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =
|
|
289 |
rdistinct (rflts (map rsimp rsa @ [RONE])) {}")
|
|
290 |
apply (simp only:)
|
|
291 |
apply(subst flts_keeps1)
|
|
292 |
apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.simps(20) rrexp.simps(6))
|
|
293 |
apply presburger
|
|
294 |
apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =
|
|
295 |
rdistinct ((rflts (map rsimp rsa)) @ [RCHAR x]) {}")
|
|
296 |
apply (simp only:)
|
|
297 |
prefer 2
|
|
298 |
apply (metis flts_keeps_others rrexp.distinct(21) rrexp.distinct(3))
|
|
299 |
apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.distinct(21) rrexp.distinct(3))
|
|
300 |
|
|
301 |
apply (metis distinct_removes_last(1) flts_keeps_others rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
|
|
302 |
prefer 2
|
|
303 |
apply (metis distinct_removes_last(1) flts_keeps_others flts_removes0 rflts_def_idiot2 rrexp.distinct(29))
|
|
304 |
apply(subgoal_tac "rflts (map rsimp rsa @ [rsimp a]) = rflts (map rsimp rsa) @ x")
|
|
305 |
prefer 2
|
|
306 |
apply (simp add: rflts_spills_last)
|
|
307 |
apply(subgoal_tac "\<forall> r \<in> set x. r \<in> set (rflts (map rsimp rsa))")
|
|
308 |
prefer 2
|
|
309 |
apply (metis (mono_tags, lifting) image_iff image_set spilled_alts_contained)
|
|
310 |
apply (metis rflts_spills_last)
|
|
311 |
by (metis distinct_removes_list spilled_alts_contained)
|
|
312 |
|
|
313 |
|
|
314 |
|
|
315 |
|
|
316 |
|
|
317 |
lemma distinct_early_app1:
|
|
318 |
shows "rset1 \<subseteq> rset \<Longrightarrow> rdistinct rs rset = rdistinct (rdistinct rs rset1) rset"
|
|
319 |
apply(induct rs arbitrary: rset rset1)
|
|
320 |
apply simp
|
|
321 |
apply simp
|
|
322 |
apply(case_tac "a \<in> rset1")
|
|
323 |
apply simp
|
|
324 |
apply(case_tac "a \<in> rset")
|
|
325 |
apply simp+
|
|
326 |
|
|
327 |
apply blast
|
|
328 |
apply(case_tac "a \<in> rset1")
|
|
329 |
apply simp+
|
|
330 |
apply(case_tac "a \<in> rset")
|
|
331 |
apply simp
|
|
332 |
apply (metis insert_subsetI)
|
|
333 |
apply simp
|
|
334 |
by (meson insert_mono)
|
|
335 |
|
|
336 |
|
|
337 |
lemma distinct_early_app:
|
|
338 |
shows " rdistinct (rs @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset"
|
|
339 |
apply(induct rsb)
|
|
340 |
apply simp
|
|
341 |
using distinct_early_app1 apply blast
|
|
342 |
by (metis distinct_early_app1 distinct_once_enough empty_subsetI)
|
|
343 |
|
|
344 |
|
|
345 |
lemma distinct_eq_interesting1:
|
|
346 |
shows "a \<in> rset \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct (rdistinct (a # rs) {} @ rsb) rset"
|
|
347 |
apply(subgoal_tac "rdistinct (rdistinct (a # rs) {} @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset")
|
|
348 |
apply(simp only:)
|
|
349 |
using distinct_early_app apply blast
|
|
350 |
by (metis append_Cons distinct_early_app rdistinct.simps(2))
|
|
351 |
|
|
352 |
|
|
353 |
|
|
354 |
|
|
355 |
end |