recovered old version of simple_induct; split the main function into small functions
authorChristian Urban <urbanc@in.tum.de>
Thu, 12 Feb 2009 16:09:42 +0000
changeset 110 12533bb49615
parent 109 b4234e8a0202
child 111 3798baeee55f
recovered old version of simple_induct; split the main function into small functions
CookBook/Package/Ind_Code.thy
CookBook/Package/simple_inductive_package.ML
cookbook.pdf
--- a/CookBook/Package/Ind_Code.thy	Thu Feb 12 14:15:50 2009 +0000
+++ b/CookBook/Package/Ind_Code.thy	Thu Feb 12 16:09:42 2009 +0000
@@ -14,9 +14,4 @@
 
 *}
 
-text {*
-
-  @{ML_chunk [display,gray] storing}
-
-*}
 end
--- a/CookBook/Package/simple_inductive_package.ML	Thu Feb 12 14:15:50 2009 +0000
+++ b/CookBook/Package/simple_inductive_package.ML	Thu Feb 12 16:09:42 2009 +0000
@@ -4,12 +4,12 @@
   val add_inductive_i:
     ((Binding.binding * typ) * mixfix) list ->  (*{predicates}*)
     (Binding.binding * typ) list ->  (*{parameters}*)
-    (Attrib.binding * term) list ->  (*{rules}*)
-    local_theory -> (thm list * thm list) * local_theory
+    ((Binding.binding * Attrib.src list) * term) list ->  (*{rules}*)
+    local_theory -> local_theory
   val add_inductive:
     (Binding.binding * string option * mixfix) list ->  (*{predicates}*)
     (Binding.binding * string option * mixfix) list ->  (*{parameters}*)
-    (Attrib.binding * string list) list list ->  (*{rules}*)
+    (Attrib.binding * string) list ->  (*{rules}*)
     local_theory -> local_theory
 end;
 (* @end *)
@@ -17,138 +17,159 @@
 structure SimpleInductivePackage: SIMPLE_INDUCTIVE_PACKAGE =
 struct
 
+
 fun mk_all x P = HOLogic.all_const (fastype_of x) $ lambda x P 
 
-fun inst_spec ct = Drule.instantiate'
-      [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec};
+fun inst_spec ct = 
+  Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec};
 
 val all_elims = fold (fn ct => fn th => th RS inst_spec ct);
 val imp_elims = fold (fn th => fn th' => [th', th] MRS @{thm mp});
 
-fun add_inductive_i preds_syn params intrs lthy =
-  let
-    val params' = map (fn (p, T) => Free (Binding.base_name p, T)) params;
-    val preds = map (fn ((R, T), _) =>
-      list_comb (Free (Binding.base_name R, T), params')) preds_syn;
-    val Tss = map (binder_types o fastype_of) preds;
-
-    (* making the definition *)
+(* @chunk induction_rules *)
+fun INDUCTION rules preds' Tss defs lthy1 lthy2 =
+let
+    val (Pnames, lthy3) = Variable.variant_fixes (replicate (length preds') "P") lthy2;
+    val Ps = map (fn (s, Ts) => Free (s, Ts ---> HOLogic.boolT)) (Pnames ~~ Tss);
+    val cPs = map (cterm_of (ProofContext.theory_of lthy3)) Ps;
+    val rules'' = map (subst_free (preds' ~~ Ps)) rules;
 
-    val intrs' = map
-      (ObjectLogic.atomize_term (ProofContext.theory_of lthy) o snd) intrs;
-
-    val (defs, lthy1) = fold_map (fn ((((R, _), syn), pred), Ts) =>
-      let val zs = map Free (Variable.variant_frees lthy intrs'
-        (map (pair "z") Ts))
-      in
-        LocalTheory.define Thm.internalK
-          ((R, syn), (Attrib.empty_binding, fold_rev lambda (params' @ zs)
-            (fold_rev mk_all preds (fold_rev (curry HOLogic.mk_imp)
-               intrs' (list_comb (pred, zs)))))) #>> snd #>> snd
-       end) (preds_syn ~~ preds ~~ Tss) lthy;
+    fun prove_indrule ((R, P), Ts)  =
+      let
+        val (znames, lthy4) = Variable.variant_fixes (replicate (length Ts) "z") lthy3;
+        val zs = map Free (znames ~~ Ts)
 
-    val (_, lthy2) = Variable.add_fixes (map (Binding.base_name o fst) params) lthy1;
- 
-     
-    (* proving the induction rules *)
-    (* @chunk induction_rules *)
-    val (Pnames, lthy3) =
-      Variable.variant_fixes (replicate (length preds) "P") lthy2;
-    val Ps = map (fn (s, Ts) => Free (s, Ts ---> HOLogic.boolT))
-      (Pnames ~~ Tss);
-    val cPs = map (cterm_of (ProofContext.theory_of lthy3)) Ps;
-    val intrs'' = map (subst_free (preds ~~ Ps) o snd) intrs;
-
-    fun prove_indrule ((R, P), Ts) =
-      let
-        val (znames, lthy4) =
-          Variable.variant_fixes (replicate (length Ts) "z") lthy3;
-        val zs = map Free (znames ~~ Ts)
+        val prem = HOLogic.mk_Trueprop (list_comb (R, zs))
+        val goal = Logic.list_implies (rules'', HOLogic.mk_Trueprop (list_comb (P, zs)))
       in
-        Goal.prove lthy4 []
-          [HOLogic.mk_Trueprop (list_comb (R, zs))]
-          (Logic.list_implies (intrs'',
-             HOLogic.mk_Trueprop (list_comb (P, zs))))
-          (fn {prems, ...} => EVERY
-             ([ObjectLogic.full_atomize_tac 1,
-               cut_facts_tac prems 1,
-               rewrite_goals_tac defs] @
-              map (fn ct => dtac (inst_spec ct) 1) cPs @
-              [assume_tac 1])) |>
-        singleton (ProofContext.export lthy4 lthy1)
+        Goal.prove lthy4 [] [prem] goal
+          (fn {prems, ...} => EVERY1
+             ([ObjectLogic.full_atomize_tac,
+               cut_facts_tac prems,
+               K (rewrite_goals_tac defs)] @
+              map (fn ct => dtac (inst_spec ct)) cPs @
+              [assume_tac])) |>
+           singleton (ProofContext.export lthy4 lthy1)
       end;
-
-    val indrules = map prove_indrule (preds ~~ Ps ~~ Tss);
-    (* @end *)
+in
+  map prove_indrule (preds' ~~ Ps ~~ Tss)
+end
+(* @end *)
 
-    (* proving the introduction rules *)
-    (* @chunk intro_rules *) 
-    fun prove_intr (i, (_, r)) =
+(* @chunk intro_rules *) 
+fun INTROS rules preds' defs lthy1 lthy2 = 
+let
+  fun prove_intro (i, r) =
       Goal.prove lthy2 [] [] r
         (fn {prems, context = ctxt} => EVERY
            [ObjectLogic.rulify_tac 1,
             rewrite_goals_tac defs,
-            REPEAT (resolve_tac [allI, impI] 1),
+            REPEAT (resolve_tac [@{thm allI},@{thm impI}] 1),
             SUBPROOF (fn {params, prems, context = ctxt', ...} =>
               let
-                val (prems1, prems2) =
-                  chop (length prems - length intrs) prems;
-                val (params1, params2) =
-                  chop (length params - length preds) params
+                val (prems1, prems2) = chop (length prems - length rules) prems;
+                val (params1, params2) = chop (length params - length preds') params;
               in
-                rtac (ObjectLogic.rulify
-                  (all_elims params1 (nth prems2 i))) 1 THEN
-                EVERY (map (fn prem =>
+                rtac (ObjectLogic.rulify (all_elims params1 (nth prems2 i))) 1 
+                THEN
+                EVERY1 (map (fn prem =>
                   SUBPROOF (fn {prems = prems', concl, ...} =>
                     let
+          
                       val prem' = prems' MRS prem;
                       val prem'' = case prop_of prem' of
                           _ $ (Const (@{const_name All}, _) $ _) =>
-                            prem' |> all_elims params2 |>
-                            imp_elims prems2
-                        | _ => prem'
-                    in rtac prem'' 1 end) ctxt' 1) prems1)
+                            prem' |> all_elims params2 
+                                  |> imp_elims prems2
+                        | _ => prem';
+                    in rtac prem'' 1 end) ctxt') prems1)
               end) ctxt 1]) |>
-      singleton (ProofContext.export lthy2 lthy1);
-
-    val intr_ths = map_index prove_intr intrs;
-    (* @end *)
+      singleton (ProofContext.export lthy2 lthy1)
+in
+  map_index prove_intro rules
+end
+(* @end *)
 
-    (* storing the theorems *)
-    (* @chunk storing *)
-    val mut_name = space_implode "_" (map (Binding.base_name o fst o fst) preds_syn);
-    val case_names = map (Binding.base_name o fst o fst) intrs
-    (* @end *)
-  in
-    lthy1 |>
-    LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>
-      ((Binding.qualify mut_name a, atts), [([th], [])]))
-        (intrs ~~ intr_ths)) |->
-    (fn intr_thss => LocalTheory.note Thm.theoremK
-       ((Binding.qualify mut_name (Binding.name "intros"), []), maps snd intr_thss)) |>>
-    snd ||>>
-    (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>
-       ((Binding.qualify (Binding.base_name R) (Binding.name "induct"),
-         [Attrib.internal (K (RuleCases.case_names case_names)),
-          Attrib.internal (K (RuleCases.consumes 1)),
-          Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
-         (preds_syn ~~ indrules)) #>> maps snd)
-  end;
-   
-(* @chunk add_inductive *)
-fun add_inductive preds params specs lthy =
- let
-    val ((vars, specs'), _) = Specification.read_specification (preds @ params) specs lthy;
-    val (preds', params') = chop (length preds) vars;
-    val specs'' = map (apsnd the_single) specs'
-    val params'' = map fst params'
- in
-    snd (add_inductive_i preds' params'' specs'' lthy) 
- end;
+(* @chunk definitions *) 
+fun define_aux s ((binding, syn), (attr, trm)) lthy =
+let 
+  val ((_, (_ , thm)), lthy) = LocalTheory.define s ((binding, syn), (attr, trm)) lthy
+in 
+  (thm, lthy) 
+end
+
+fun DEFINITION params' rules preds preds' Tss lthy =
+let
+  val rules' = map (ObjectLogic.atomize_term (ProofContext.theory_of lthy)) rules
+in
+  fold_map (fn ((((R, _), syn), pred), Ts) =>
+    let 
+      val zs = map Free (Variable.variant_frees lthy rules' (map (pair "z") Ts))
+        
+      val t0 = list_comb (pred, zs);
+      val t1 = fold_rev (curry HOLogic.mk_imp) rules' t0;
+      val t2 = fold_rev mk_all preds' t1;      
+      val t3 = fold_rev lambda (params' @ zs) t2;
+    in
+      define_aux Thm.internalK ((R, syn), (Attrib.empty_binding, t3))
+    end) (preds ~~ preds' ~~ Tss) lthy
+end
 (* @end *)
 
+(* @chunk add_inductive_i *)
+fun add_inductive_i preds params specs lthy =
+  let
+    val params' = map (fn (p, T) => Free (Binding.base_name p, T)) params;
+    val preds' = map (fn ((R, T), _) => list_comb (Free (Binding.base_name R, T), params')) preds;
+    val Tss = map (binder_types o fastype_of) preds';   
+    val (ass,rules) = split_list specs;    
 
-(* outer syntax *)
+    val (defs, lthy1) = DEFINITION params' rules preds preds' Tss lthy
+    val (_, lthy2) = Variable.add_fixes (map (Binding.base_name o fst) params) lthy1;
+      
+    val inducts = INDUCTION rules preds' Tss defs lthy1 lthy2
+
+    val intros = INTROS rules preds' defs lthy1 lthy2
+
+    val mut_name = space_implode "_" (map (Binding.base_name o fst o fst) preds);
+    val case_names = map (Binding.base_name o fst o fst) specs
+  in
+    lthy1 
+    |> LocalTheory.notes Thm.theoremK (map (fn (((a, atts), _), th) =>
+        ((Binding.qualify mut_name a, atts), [([th], [])])) (specs ~~ intros)) 
+    |-> (fn intross => LocalTheory.note Thm.theoremK
+         ((Binding.qualify mut_name (Binding.name "intros"), []), maps snd intross)) 
+    |>> snd 
+    ||>> (LocalTheory.notes Thm.theoremK (map (fn (((R, _), _), th) =>
+         ((Binding.qualify (Binding.base_name R) (Binding.name "induct"),
+          [Attrib.internal (K (RuleCases.case_names case_names)),
+           Attrib.internal (K (RuleCases.consumes 1)),
+           Attrib.internal (K (Induct.induct_pred ""))]), [([th], [])]))
+          (preds ~~ inducts)) #>> maps snd) 
+    |> snd
+  end
+(* @end *)
+
+(* @chunk add_inductive *)
+fun read_specification' vars specs lthy =
+let 
+  val specs' = map (fn (a, s) => [(a, [s])]) specs
+  val ((varst, specst), _) = Specification.read_specification vars specs' lthy
+  val specst' = map (apsnd the_single) specst
+in   
+  (varst, specst')
+end 
+
+fun add_inductive preds params specs lthy =
+let
+  val (vars, specs') = read_specification' (preds @ params) specs lthy;
+  val (preds', params') = chop (length preds) vars;
+  val params'' = map fst params'
+in
+  add_inductive_i preds' params'' specs' lthy
+end;
+(* @end *)
+
 (* @chunk syntax *)
 val parser = 
    OuterParse.opt_target --
@@ -158,14 +179,12 @@
        (OuterParse.$$$ "where" |--
           OuterParse.!!! 
             (OuterParse.enum1 "|" 
-               ((SpecParse.opt_thm_name ":" -- 
-                   (OuterParse.prop >> single)) >> single))) []
-
+               (SpecParse.opt_thm_name ":" -- OuterParse.prop))) []
 
 val ind_decl =
-    parser >>
+  parser >>
     (fn (((loc, preds), params), specs) =>
-      Toplevel.local_theory loc (add_inductive preds params specs));
+      Toplevel.local_theory loc (add_inductive preds params specs))
 
 val _ = OuterSyntax.command "simple_inductive" "define inductive predicates"
   OuterKeyword.thy_decl ind_decl;
Binary file cookbook.pdf has changed