--- a/ProgTutorial/Recipes/Oracle.thy Fri May 17 07:29:51 2019 +0200
+++ b/ProgTutorial/Recipes/Oracle.thy Fri May 17 10:38:01 2019 +0200
@@ -76,21 +76,18 @@
text \<open>
Here is the string representation of the term @{term "p = (q = p)"}:
- @{ML_matchresult
- "translate @{term \"p = (q = p)\"}"
- "\" ( p <=> ( q <=> p ) ) \""}
+ @{ML_matchresult \<open>translate @{term "p = (q = p)"}\<close>
+ \<open>" ( p <=> ( q <=> p ) ) "\<close>}
Let us check, what the solver returns when given a tautology:
- @{ML_matchresult
- "IffSolver.decide (translate @{term \"p = (q = p) = q\"})"
- "true"}
+ @{ML_matchresult \<open>IffSolver.decide (translate @{term "p = (q = p) = q"})\<close>
+ \<open>true\<close>}
And here is what it returns for a formula which is not valid:
- @{ML_matchresult
- "IffSolver.decide (translate @{term \"p = (q = p)\"})"
- "false"}
+ @{ML_matchresult \<open>IffSolver.decide (translate @{term "p = (q = p)"})\<close>
+ \<open>false\<close>}
\<close>
text \<open>
@@ -113,7 +110,7 @@
text \<open>
Here is what we get when applying the oracle:
- @{ML_matchresult_fake "iff_oracle @{cprop \"p = (p::bool)\"}" "p = p"}
+ @{ML_matchresult_fake \<open>iff_oracle @{cprop "p = (p::bool)"}\<close> \<open>p = p\<close>}
(FIXME: is there a better way to present the theorem?)