diff -r be23597e81db -r f875a25aa72d ProgTutorial/Recipes/Oracle.thy --- a/ProgTutorial/Recipes/Oracle.thy Fri May 17 07:29:51 2019 +0200 +++ b/ProgTutorial/Recipes/Oracle.thy Fri May 17 10:38:01 2019 +0200 @@ -76,21 +76,18 @@ text \ Here is the string representation of the term @{term "p = (q = p)"}: - @{ML_matchresult - "translate @{term \"p = (q = p)\"}" - "\" ( p <=> ( q <=> p ) ) \""} + @{ML_matchresult \translate @{term "p = (q = p)"}\ + \" ( p <=> ( q <=> p ) ) "\} Let us check, what the solver returns when given a tautology: - @{ML_matchresult - "IffSolver.decide (translate @{term \"p = (q = p) = q\"})" - "true"} + @{ML_matchresult \IffSolver.decide (translate @{term "p = (q = p) = q"})\ + \true\} And here is what it returns for a formula which is not valid: - @{ML_matchresult - "IffSolver.decide (translate @{term \"p = (q = p)\"})" - "false"} + @{ML_matchresult \IffSolver.decide (translate @{term "p = (q = p)"})\ + \false\} \ text \ @@ -113,7 +110,7 @@ text \ Here is what we get when applying the oracle: - @{ML_matchresult_fake "iff_oracle @{cprop \"p = (p::bool)\"}" "p = p"} + @{ML_matchresult_fake \iff_oracle @{cprop "p = (p::bool)"}\ \p = p\} (FIXME: is there a better way to present the theorem?)