--- a/CookBook/Package/Ind_General_Scheme.thy Fri Feb 13 14:15:28 2009 +0000
+++ b/CookBook/Package/Ind_General_Scheme.thy Sat Feb 14 00:11:50 2009 +0000
@@ -38,7 +38,7 @@
\end{array}
\]
- The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are
+ The induction principles for the inductive predicates $R_1,\ldots,R_n$ are
\[
\begin{array}{l@ {\qquad}l}
@@ -62,8 +62,8 @@
\]
where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for
- $\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$
- from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format)
+ $\forall$ and $\longrightarrow$ yields a goal state in which we have to prove $P_{l_i}~\vec{t}_i$
+ from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to the meta-logic format)
to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption,
as well as subgoals of the form
@@ -77,6 +77,8 @@
\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow
\forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K}
\]
+
+ What remains is to implement these proofs generically.
*}
end