diff -r 039845fc96bd -r c9ff326e3ce5 CookBook/Package/Ind_General_Scheme.thy --- a/CookBook/Package/Ind_General_Scheme.thy Fri Feb 13 14:15:28 2009 +0000 +++ b/CookBook/Package/Ind_General_Scheme.thy Sat Feb 14 00:11:50 2009 +0000 @@ -38,7 +38,7 @@ \end{array} \] - The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are + The induction principles for the inductive predicates $R_1,\ldots,R_n$ are \[ \begin{array}{l@ {\qquad}l} @@ -62,8 +62,8 @@ \] where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for - $\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$ - from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format) + $\forall$ and $\longrightarrow$ yields a goal state in which we have to prove $P_{l_i}~\vec{t}_i$ + from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to the meta-logic format) to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption, as well as subgoals of the form @@ -77,6 +77,8 @@ \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K} \] + + What remains is to implement these proofs generically. *} end