--- a/ProgTutorial/Package/Ind_Code.thy Mon Oct 17 13:30:49 2011 +0100
+++ b/ProgTutorial/Package/Ind_Code.thy Wed Oct 26 12:59:44 2011 +0100
@@ -136,7 +136,7 @@
ML %linenosgray{*fun defns rules preds prednames mxs arg_typss lthy =
let
- val thy = ProofContext.theory_of lthy
+ val thy = Proof_Context.theory_of lthy
val orules = map (Object_Logic.atomize_term thy) rules
val defs = map (defn_aux lthy orules preds) (preds ~~ arg_typss)
in
@@ -148,7 +148,7 @@
meta-quanti\-fications. In Line 4, we transform these introduction rules
into the object logic (since definitions cannot be stated with
meta-connectives). To do this transformation we have to obtain the theory
- behind the local theory using the function @{ML_ind theory_of in ProofContext}
+ behind the local theory using the function @{ML_ind theory_of in Proof_Context}
(Line 3); with this theory we can use the function
@{ML_ind atomize_term in Object_Logic} to make the transformation (Line 4). The call
to @{ML defn_aux} in Line 5 produces all right-hand sides of the
@@ -341,7 +341,7 @@
in
Goal.prove lthy' [] [prem] goal
(fn {prems, ...} => ind_tac defs prems cnewpreds)
- |> singleton (ProofContext.export lthy' lthy)
+ |> singleton (Proof_Context.export lthy' lthy)
end *}
text {*
@@ -405,7 +405,7 @@
val Ps = replicate (length preds) "P"
val (newprednames, lthy') = Variable.variant_fixes Ps lthy
- val thy = ProofContext.theory_of lthy'
+ val thy = Proof_Context.theory_of lthy'
val tyss' = map (fn tys => tys ---> HOLogic.boolT) arg_tyss
val newpreds = map Free (newprednames ~~ tyss')
@@ -415,7 +415,7 @@
in
map (prove_ind lthy' defs srules cnewpreds)
(preds ~~ newpreds ~~ arg_tyss)
- |> ProofContext.export lthy' lthy
+ |> Proof_Context.export lthy' lthy
end*}
text {*