diff -r fea1b7ce5c4a -r 25371f74c768 ProgTutorial/Package/Ind_Code.thy --- a/ProgTutorial/Package/Ind_Code.thy Mon Oct 17 13:30:49 2011 +0100 +++ b/ProgTutorial/Package/Ind_Code.thy Wed Oct 26 12:59:44 2011 +0100 @@ -136,7 +136,7 @@ ML %linenosgray{*fun defns rules preds prednames mxs arg_typss lthy = let - val thy = ProofContext.theory_of lthy + val thy = Proof_Context.theory_of lthy val orules = map (Object_Logic.atomize_term thy) rules val defs = map (defn_aux lthy orules preds) (preds ~~ arg_typss) in @@ -148,7 +148,7 @@ meta-quanti\-fications. In Line 4, we transform these introduction rules into the object logic (since definitions cannot be stated with meta-connectives). To do this transformation we have to obtain the theory - behind the local theory using the function @{ML_ind theory_of in ProofContext} + behind the local theory using the function @{ML_ind theory_of in Proof_Context} (Line 3); with this theory we can use the function @{ML_ind atomize_term in Object_Logic} to make the transformation (Line 4). The call to @{ML defn_aux} in Line 5 produces all right-hand sides of the @@ -341,7 +341,7 @@ in Goal.prove lthy' [] [prem] goal (fn {prems, ...} => ind_tac defs prems cnewpreds) - |> singleton (ProofContext.export lthy' lthy) + |> singleton (Proof_Context.export lthy' lthy) end *} text {* @@ -405,7 +405,7 @@ val Ps = replicate (length preds) "P" val (newprednames, lthy') = Variable.variant_fixes Ps lthy - val thy = ProofContext.theory_of lthy' + val thy = Proof_Context.theory_of lthy' val tyss' = map (fn tys => tys ---> HOLogic.boolT) arg_tyss val newpreds = map Free (newprednames ~~ tyss') @@ -415,7 +415,7 @@ in map (prove_ind lthy' defs srules cnewpreds) (preds ~~ newpreds ~~ arg_tyss) - |> ProofContext.export lthy' lthy + |> Proof_Context.export lthy' lthy end*} text {*