--- a/ProgTutorial/Recipes/Sat.thy Fri Oct 29 13:46:37 2010 +0200
+++ b/ProgTutorial/Recipes/Sat.thy Wed Feb 23 23:55:37 2011 +0000
@@ -18,22 +18,22 @@
The SAT solvers expect a propositional formula as input and produce
a result indicating that the formula is either satisfiable, unsatisfiable or
unknown. The type of the propositional formula is
- @{ML_type "PropLogic.prop_formula"} with the usual constructors such
- as @{ML And in PropLogic}, @{ML Or in PropLogic} and so on.
+ @{ML_type "Prop_Logic.prop_formula"} with the usual constructors such
+ as @{ML And in Prop_Logic}, @{ML Or in Prop_Logic} and so on.
- The function @{ML PropLogic.prop_formula_of_term} translates an Isabelle
+ The function @{ML Prop_Logic.prop_formula_of_term} translates an Isabelle
term into a propositional formula. Let
us illustrate this function by translating @{term "A \<and> \<not>A \<or> B"}.
The function will return a propositional formula and a table. Suppose
*}
ML{*val (pform, table) =
- PropLogic.prop_formula_of_term @{term "A \<and> \<not>A \<or> B"} Termtab.empty*}
+ Prop_Logic.prop_formula_of_term @{term "A \<and> \<not>A \<or> B"} Termtab.empty*}
text {*
then the resulting propositional formula @{ML pform} is
- @{ML [display] "Or (And (BoolVar 1, Not (BoolVar 1)), BoolVar 2)" in PropLogic}
+ @{ML [display] "Or (And (BoolVar 1, Not (BoolVar 1)), BoolVar 2)" in Prop_Logic}
where indices are assigned for the variables
@@ -52,10 +52,10 @@
*}
ML{*val (pform', table') =
- PropLogic.prop_formula_of_term @{term "\<forall>x::nat. P x"} Termtab.empty*}
+ Prop_Logic.prop_formula_of_term @{term "\<forall>x::nat. P x"} Termtab.empty*}
text {*
- returns @{ML "BoolVar 1" in PropLogic} for @{ML pform'} and the table
+ returns @{ML "BoolVar 1" in Prop_Logic} for @{ML pform'} and the table
@{ML table'} is:
@{ML_response_fake [display,gray]