diff -r aedfdcae39a9 -r 242e81f4d461 ProgTutorial/Recipes/Sat.thy --- a/ProgTutorial/Recipes/Sat.thy Fri Oct 29 13:46:37 2010 +0200 +++ b/ProgTutorial/Recipes/Sat.thy Wed Feb 23 23:55:37 2011 +0000 @@ -18,22 +18,22 @@ The SAT solvers expect a propositional formula as input and produce a result indicating that the formula is either satisfiable, unsatisfiable or unknown. The type of the propositional formula is - @{ML_type "PropLogic.prop_formula"} with the usual constructors such - as @{ML And in PropLogic}, @{ML Or in PropLogic} and so on. + @{ML_type "Prop_Logic.prop_formula"} with the usual constructors such + as @{ML And in Prop_Logic}, @{ML Or in Prop_Logic} and so on. - The function @{ML PropLogic.prop_formula_of_term} translates an Isabelle + The function @{ML Prop_Logic.prop_formula_of_term} translates an Isabelle term into a propositional formula. Let us illustrate this function by translating @{term "A \ \A \ B"}. The function will return a propositional formula and a table. Suppose *} ML{*val (pform, table) = - PropLogic.prop_formula_of_term @{term "A \ \A \ B"} Termtab.empty*} + Prop_Logic.prop_formula_of_term @{term "A \ \A \ B"} Termtab.empty*} text {* then the resulting propositional formula @{ML pform} is - @{ML [display] "Or (And (BoolVar 1, Not (BoolVar 1)), BoolVar 2)" in PropLogic} + @{ML [display] "Or (And (BoolVar 1, Not (BoolVar 1)), BoolVar 2)" in Prop_Logic} where indices are assigned for the variables @@ -52,10 +52,10 @@ *} ML{*val (pform', table') = - PropLogic.prop_formula_of_term @{term "\x::nat. P x"} Termtab.empty*} + Prop_Logic.prop_formula_of_term @{term "\x::nat. P x"} Termtab.empty*} text {* - returns @{ML "BoolVar 1" in PropLogic} for @{ML pform'} and the table + returns @{ML "BoolVar 1" in Prop_Logic} for @{ML pform'} and the table @{ML table'} is: @{ML_response_fake [display,gray]