--- a/CookBook/FirstSteps.thy Wed Jan 14 18:30:41 2009 +0000
+++ b/CookBook/FirstSteps.thy Wed Jan 14 21:46:04 2009 +0000
@@ -157,10 +157,11 @@
map #name (Net.entries rules)
end" "[\"Nat.of_nat_eq_id\", \"Int.of_int_eq_id\", \"Nat.One_nat_def\", \<dots>]"}
- In the second example, the function @{ML rep_ss in MetaSimplifier} returns a record
- containing information about the simpset. The rules of a simpset are stored in a
- discrimination net (a datastructure for fast indexing). From this net we can extract
- the entries using the function @{ML Net.entries}.
+ The second example extracts the theorem names that are stored in a simpset.
+ For this the function @{ML rep_ss in MetaSimplifier} returns a record
+ containing information about the simpset. The rules of a simpset are stored
+ in a discrimination net (a datastructure for fast indexing). From this net
+ we can extract the entries using the function @{ML Net.entries}.
While antiquotations have many applications, they were originally introduced to
avoid explicit bindings for theorems such as
@@ -185,8 +186,9 @@
One way to construct terms of Isabelle on the ML-level is by using the antiquotation
\mbox{@{text "@{term \<dots>}"}}. For example
- @{ML_response [display] "@{term \"(a::nat) + b = c\"}"
- "Const (\"op =\", \<dots>) $ (Const (\"HOL.plus_class.plus\", \<dots>) $ \<dots> $ \<dots>) $ \<dots>"}
+ @{ML_response [display]
+ "@{term \"(a::nat) + b = c\"}"
+ "Const (\"op =\", \<dots>) $ (Const (\"HOL.plus_class.plus\", \<dots>) $ \<dots> $ \<dots>) $ \<dots>"}
This will show the term @{term "(a::nat) + b = c"}, but printed using the internal
representation of this term. This internal representation corresponds to the