diff -r bbb2d5f1d58d -r 14c3dd5ee2ad CookBook/FirstSteps.thy --- a/CookBook/FirstSteps.thy Wed Jan 14 18:30:41 2009 +0000 +++ b/CookBook/FirstSteps.thy Wed Jan 14 21:46:04 2009 +0000 @@ -157,10 +157,11 @@ map #name (Net.entries rules) end" "[\"Nat.of_nat_eq_id\", \"Int.of_int_eq_id\", \"Nat.One_nat_def\", \]"} - In the second example, the function @{ML rep_ss in MetaSimplifier} returns a record - containing information about the simpset. The rules of a simpset are stored in a - discrimination net (a datastructure for fast indexing). From this net we can extract - the entries using the function @{ML Net.entries}. + The second example extracts the theorem names that are stored in a simpset. + For this the function @{ML rep_ss in MetaSimplifier} returns a record + containing information about the simpset. The rules of a simpset are stored + in a discrimination net (a datastructure for fast indexing). From this net + we can extract the entries using the function @{ML Net.entries}. While antiquotations have many applications, they were originally introduced to avoid explicit bindings for theorems such as @@ -185,8 +186,9 @@ One way to construct terms of Isabelle on the ML-level is by using the antiquotation \mbox{@{text "@{term \}"}}. For example - @{ML_response [display] "@{term \"(a::nat) + b = c\"}" - "Const (\"op =\", \) $ (Const (\"HOL.plus_class.plus\", \) $ \ $ \) $ \"} + @{ML_response [display] + "@{term \"(a::nat) + b = c\"}" + "Const (\"op =\", \) $ (Const (\"HOL.plus_class.plus\", \) $ \ $ \) $ \"} This will show the term @{term "(a::nat) + b = c"}, but printed using the internal representation of this term. This internal representation corresponds to the