|
1 theory Ind_General_Scheme |
|
2 imports Main |
|
3 begin |
|
4 |
|
5 section{* The general construction principle *} |
|
6 |
|
7 text {* |
|
8 \label{sec:ind-general-method} |
|
9 Before we start with the implementation, it is useful to describe the general |
|
10 form of inductive definitions that our package should accept. We closely follow |
|
11 the notation for inductive definitions introduced by Schwichtenberg |
|
12 \cite{Schwichtenberg-MLCF} for the Minlog system. |
|
13 Let $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be |
|
14 parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have |
|
15 the form |
|
16 \[ |
|
17 \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
|
18 R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i |
|
19 \qquad \mbox{for\ } i=1,\ldots,r |
|
20 \] |
|
21 where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$. |
|
22 Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure |
|
23 that all occurrences of the predicates in the premises of the introduction rules are |
|
24 \emph{strictly positive}. This condition guarantees the existence of predicates |
|
25 that are closed under the introduction rules shown above. The inductive predicates |
|
26 $R_1,\ldots,R_n$ can then be defined as follows: |
|
27 \[ |
|
28 \begin{array}{l@ {\qquad}l} |
|
29 R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i & |
|
30 \mbox{for\ } i=1,\ldots,n \\[1.5ex] |
|
31 \mbox{where} \\ |
|
32 K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow |
|
33 P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i & |
|
34 \mbox{for\ } i=1,\ldots,r |
|
35 \end{array} |
|
36 \] |
|
37 The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are |
|
38 \[ |
|
39 \begin{array}{l@ {\qquad}l} |
|
40 R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i & |
|
41 \mbox{for\ } i=1,\ldots,n \\[1.5ex] |
|
42 \mbox{where} \\ |
|
43 I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
|
44 P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i & |
|
45 \mbox{for\ } i=1,\ldots,r |
|
46 \end{array} |
|
47 \] |
|
48 Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level |
|
49 connectives, it is clear that the proof of the induction theorem is straightforward. We will |
|
50 therefore focus on the proof of the introduction rules. When proving the introduction rule |
|
51 shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields |
|
52 \[ |
|
53 \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
|
54 \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i |
|
55 \] |
|
56 where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for |
|
57 $\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$ |
|
58 from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format) |
|
59 to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption, |
|
60 as well as subgoals of the form |
|
61 \[ |
|
62 \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i |
|
63 \] |
|
64 that can be solved using the assumptions |
|
65 \[ |
|
66 \bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow |
|
67 \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K} |
|
68 \] |
|
69 *} |
|
70 |
|
71 end |