diff -r 53460ac408b5 -r 5bb2d29553c2 CookBook/Package/Ind_General_Scheme.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CookBook/Package/Ind_General_Scheme.thy Fri Oct 10 17:13:21 2008 +0200 @@ -0,0 +1,71 @@ +theory Ind_General_Scheme +imports Main +begin + +section{* The general construction principle *} + +text {* +\label{sec:ind-general-method} +Before we start with the implementation, it is useful to describe the general +form of inductive definitions that our package should accept. We closely follow +the notation for inductive definitions introduced by Schwichtenberg +\cite{Schwichtenberg-MLCF} for the Minlog system. +Let $R_1,\ldots,R_n$ be mutually inductive predicates and $\vec{p}$ be +parameters. Then the introduction rules for $R_1,\ldots,R_n$ may have +the form +\[ +\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + R_{k_{ij}}~\vec{p}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow R_{l_i}~\vec{p}~\vec{t}_i +\qquad \mbox{for\ } i=1,\ldots,r +\] +where $\vec{A}_i$ and $\vec{B}_{ij}$ are formulae not containing $R_1,\ldots,R_n$. +Note that by disallowing the inductive predicates to occur in $\vec{B}_{ij}$ we make sure +that all occurrences of the predicates in the premises of the introduction rules are +\emph{strictly positive}. This condition guarantees the existence of predicates +that are closed under the introduction rules shown above. The inductive predicates +$R_1,\ldots,R_n$ can then be defined as follows: +\[ +\begin{array}{l@ {\qquad}l} + R_i \equiv \lambda\vec{p}~\vec{z}_i.~\forall P_1 \ldots P_n.~K_1 \longrightarrow \cdots \longrightarrow K_r \longrightarrow P_i~\vec{z}_i & + \mbox{for\ } i=1,\ldots,n \\[1.5ex] + \mbox{where} \\ + K_i \equiv \forall\vec{x}_i.~\vec{A}_i \longrightarrow \left(\forall\vec{y}_{ij}.~\vec{B}_{ij} \longrightarrow + P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \longrightarrow P_{l_i}~\vec{t}_i & + \mbox{for\ } i=1,\ldots,r +\end{array} +\] +The (weak) induction rules for the inductive predicates $R_1,\ldots,R_n$ are +\[ +\begin{array}{l@ {\qquad}l} + R_i~\vec{p}~\vec{z}_i \Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i~\vec{z}_i & + \mbox{for\ } i=1,\ldots,n \\[1.5ex] + \mbox{where} \\ + I_i \equiv \bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow P_{l_i}~\vec{t}_i & + \mbox{for\ } i=1,\ldots,r +\end{array} +\] +Since $K_i$ and $I_i$ are equivalent modulo conversion between meta-level and object-level +connectives, it is clear that the proof of the induction theorem is straightforward. We will +therefore focus on the proof of the introduction rules. When proving the introduction rule +shown above, we start by unfolding the definition of $R_1,\ldots,R_n$, which yields +\[ +\bigwedge\vec{x}_i.~\vec{A}_i \Longrightarrow \left(\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij}\right)_{j=1,\ldots,m_i} \Longrightarrow \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{l_i}~\vec{t}_i +\] +where $\vec{K}$ abbreviates $K_1,\ldots,K_r$. Applying the introduction rules for +$\forall$ and $\longrightarrow$ yields a proof state in which we have to prove $P_{l_i}~\vec{t}_i$ +from the additional assumptions $\vec{K}$. When using $K_{l_i}$ (converted to meta-logic format) +to prove $P_{l_i}~\vec{t}_i$, we get subgoals $\vec{A}_i$ that are trivially solvable by assumption, +as well as subgoals of the form +\[ +\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{for\ } j=1,\ldots,m_i +\] +that can be solved using the assumptions +\[ +\bigwedge\vec{y}_{ij}.~\vec{B}_{ij} \Longrightarrow + \forall P_1 \ldots P_n.~\vec{K} \longrightarrow P_{k_{ij}}~\vec{s}_{ij} \qquad \mbox{and} \qquad \vec{K} +\] +*} + +end