--- a/etnms/20200205.tex Wed Feb 05 22:55:21 2020 +0000
+++ b/etnms/20200205.tex Thu Feb 06 10:49:23 2020 +0000
@@ -1381,13 +1381,14 @@
This discrepancy does not appear for the old
version of $\simp$.
+Why?
During the first derivative operation,
-$\rup\backslash a=(_0\ONE + \ZERO)(_0a + _1a^*)$ is
-in the form of a sequence regular expression with
+$\rup\backslash a=( _0[ \ONE\cdot {\bf b}] + _1( _0[ _1\ONE \cdot {\bf a}^*] + [ \ONE \cdot {\bf a}]) )$
+is in the form of a sequence regular expression with
two components, the first
one $\ONE + \ZERO$ being nullable.
-Recall the simplification function definition:
+Recall again the simplification function definition:
\begin{center}
\begin{tabular}{@{}lcl@{}}
@@ -1461,6 +1462,8 @@
with the first component being nullable
(unsimplified, unlike the first round of running$\backslash_{simp}$).
Therefore $((_0\ONE + \ZERO)(_0a + _1a^*))\backslash a$ splits into
+$\rup\backslash a=(_0( [\ZERO\cdot {\bf b}] + 0) + _1( _0( [\ZERO\cdot a^*] + _1[ _1\ONE \cdot {\bf a}^*]) + _1( [\ZERO \cdot {\bf a}] + \ONE) ))$
+
$([(\ZERO + \ZERO)\cdot(_0a + _1a^*)] + _0( _0\ONE + _1[_1\ONE \cdot a^*]))$.
After these two successive derivatives without simplification,
we apply $\simp$ to this regular expression, which goes through