afte
authorChengsong
Thu, 06 Feb 2020 10:49:23 +0000
changeset 124 d9d2da923b7f
parent 123 fb7472a29058
child 125 788f4aa28bc5
afte
etnms/20200205.tex
--- a/etnms/20200205.tex	Wed Feb 05 22:55:21 2020 +0000
+++ b/etnms/20200205.tex	Thu Feb 06 10:49:23 2020 +0000
@@ -1381,13 +1381,14 @@
 This discrepancy does not appear for the old
 version of $\simp$.
 
+Why?
 
 During the first derivative operation, 
-$\rup\backslash a=(_0\ONE  + \ZERO)(_0a  +  _1a^*)$  is
-in the form of a sequence regular expression with
+$\rup\backslash a=(    _0[ \ONE\cdot {\bf b}] + _1( _0[ _1\ONE \cdot {\bf a}^*] + [ \ONE \cdot {\bf a}])      )$ 
+is in the form of a sequence regular expression with
 two components, the first
 one $\ONE + \ZERO$ being nullable. 
-Recall the simplification function definition:
+Recall again the simplification function definition:
 \begin{center}
   \begin{tabular}{@{}lcl@{}}
    
@@ -1461,6 +1462,8 @@
 with the first component being nullable
 (unsimplified, unlike the first round of running$\backslash_{simp}$).
 Therefore $((_0\ONE  + \ZERO)(_0a  +  _1a^*))\backslash a$ splits into
+$\rup\backslash a=(_0( [\ZERO\cdot {\bf b}] + 0) + _1( _0( [\ZERO\cdot a^*] + _1[ _1\ONE \cdot {\bf a}^*]) + _1( [\ZERO \cdot {\bf a}] + \ONE)  ))$ 
+
 $([(\ZERO + \ZERO)\cdot(_0a  +  _1a^*)] + _0( _0\ONE  + _1[_1\ONE \cdot a^*]))$.
 After these two successive derivatives without simplification,
 we apply $\simp$ to this regular expression, which goes through