# HG changeset patch # User Chengsong # Date 1580986163 0 # Node ID d9d2da923b7fe56d61947eb9b2626911513e9721 # Parent fb7472a29058b7cb4a3cebfbc5e3a95a7f5048db afte diff -r fb7472a29058 -r d9d2da923b7f etnms/20200205.tex --- a/etnms/20200205.tex Wed Feb 05 22:55:21 2020 +0000 +++ b/etnms/20200205.tex Thu Feb 06 10:49:23 2020 +0000 @@ -1381,13 +1381,14 @@ This discrepancy does not appear for the old version of $\simp$. +Why? During the first derivative operation, -$\rup\backslash a=(_0\ONE + \ZERO)(_0a + _1a^*)$ is -in the form of a sequence regular expression with +$\rup\backslash a=( _0[ \ONE\cdot {\bf b}] + _1( _0[ _1\ONE \cdot {\bf a}^*] + [ \ONE \cdot {\bf a}]) )$ +is in the form of a sequence regular expression with two components, the first one $\ONE + \ZERO$ being nullable. -Recall the simplification function definition: +Recall again the simplification function definition: \begin{center} \begin{tabular}{@{}lcl@{}} @@ -1461,6 +1462,8 @@ with the first component being nullable (unsimplified, unlike the first round of running$\backslash_{simp}$). Therefore $((_0\ONE + \ZERO)(_0a + _1a^*))\backslash a$ splits into +$\rup\backslash a=(_0( [\ZERO\cdot {\bf b}] + 0) + _1( _0( [\ZERO\cdot a^*] + _1[ _1\ONE \cdot {\bf a}^*]) + _1( [\ZERO \cdot {\bf a}] + \ONE) ))$ + $([(\ZERO + \ZERO)\cdot(_0a + _1a^*)] + _0( _0\ONE + _1[_1\ONE \cdot a^*]))$. After these two successive derivatives without simplification, we apply $\simp$ to this regular expression, which goes through