etnms/etnms.tex
changeset 109 79f347cb8b4d
parent 108 0a0c551bb368
child 110 a85c0f0fcf44
equal deleted inserted replaced
108:0a0c551bb368 109:79f347cb8b4d
   492 derivative operations on the annotated regular expressions. This
   492 derivative operations on the annotated regular expressions. This
   493 derivative operation is the same as what we had previously for the
   493 derivative operation is the same as what we had previously for the
   494 basic regular expressions, except that we beed to take care of
   494 basic regular expressions, except that we beed to take care of
   495 the bitcodes:
   495 the bitcodes:
   496 
   496 
       
   497 
       
   498 \iffalse
   497  %\begin{definition}{bder}
   499  %\begin{definition}{bder}
   498 \begin{center}
   500 \begin{center}
   499   \begin{tabular}{@{}lcl@{}}
   501   \begin{tabular}{@{}lcl@{}}
   500   $(\textit{ZERO})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
   502   $(\textit{ZERO})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
   501   $(\textit{ONE}\;bs)\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
   503   $(\textit{ONE}\;bs)\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
   514        (\textit{STAR}\,[]\,r)$
   516        (\textit{STAR}\,[]\,r)$
   515 \end{tabular}    
   517 \end{tabular}    
   516 \end{center}    
   518 \end{center}    
   517 %\end{definition}
   519 %\end{definition}
   518 
   520 
       
   521 \begin{center}
       
   522   \begin{tabular}{@{}lcl@{}}
       
   523   $(\textit{ZERO})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
       
   524   $(_{bs}\textit{ONE})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
       
   525   $(_{bs}\textit{CHAR}\;d)\,\backslash c$ & $\dn$ &
       
   526         $\textit{if}\;c=d\; \;\textit{then}\;
       
   527          _{bs}\textit{ONE}\;\textit{else}\;\textit{ZERO}$\\  
       
   528   $(_{bs}\textit{ALTS}\;as)\,\backslash c$ & $\dn$ &
       
   529   $_{bs}\textit{ALTS}\;(as.map(\backslash c))$\\
       
   530   $(_{bs}\textit{SEQ}\;a_1\,a_2)\,\backslash c$ & $\dn$ &
       
   531      $\textit{if}\;\textit{bnullable}\,a_1$\\
       
   532 					       & &$\textit{then}\;_{bs}\textit{ALTS}\,List((_{[]}\textit{SEQ}\,(a_1\,\backslash c)\,a_2),$\\
       
   533 					       & &$\phantom{\textit{then}\;_{bs}\textit{ALTS}\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c)))$\\
       
   534   & &$\textit{else}\;_{bs}\textit{SEQ}\,(a_1\,\backslash c)\,a_2$\\
       
   535   $(_{bs}\textit{STAR}\,a)\,\backslash c$ & $\dn$ &
       
   536       $_{bs}\textit{SEQ}\;(\textit{fuse}\, [\Z] (r\,\backslash c))\,
       
   537        (_{bs}\textit{STAR}\,[]\,r)$
       
   538 \end{tabular}    
       
   539 \end{center}    
       
   540 %\end{definition}
       
   541 \fi
       
   542 
       
   543 \begin{center}
       
   544   \begin{tabular}{@{}lcl@{}}
       
   545   $(\ZERO)\,\backslash c$ & $\dn$ & $\ZERO$\\  
       
   546   $(_{bs}\ONE)\,\backslash c$ & $\dn$ & $\ZERO$\\  
       
   547   $(_{bs}{\bf d})\,\backslash c$ & $\dn$ &
       
   548         $\textit{if}\;c=d\; \;\textit{then}\;
       
   549          _{bs}\ONE\;\textit{else}\;\ZERO$\\  
       
   550   $(_{bs}\oplus \;as)\,\backslash c$ & $\dn$ &
       
   551   $_{bs}\oplus\;(as.map(\backslash c))$\\
       
   552   $(_{bs}\;a_1\cdot a_2)\,\backslash c$ & $\dn$ &
       
   553      $\textit{if}\;\textit{bnullable}\,a_1$\\
       
   554 					       & &$\textit{then}\;_{bs}\oplus\,[(_{[]}\,(a_1\,\backslash c)\cdot\,a_2),$\\
       
   555 					       & &$\phantom{\textit{then},\;_{bs}\oplus\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))]$\\
       
   556   & &$\textit{else}\;_{bs}\,(a_1\,\backslash c)\cdot a_2$\\
       
   557   $(_{bs}a^*)\,\backslash c$ & $\dn$ &
       
   558       $_{bs}\;((\textit{fuse}\, [\Z] (r\,\backslash c))\cdot
       
   559        (_{[]}r^*))$
       
   560 \end{tabular}    
       
   561 \end{center}    
       
   562 
       
   563 %\end{definition}
   519 \noindent
   564 \noindent
   520 For instance, when we unfold $\textit{STAR} \; bs \; a$ into a sequence,
   565 For instance, when we unfold $\textit{STAR} \; bs \; a$ into a sequence,
   521 we need to attach an additional bit $Z$ to the front of $r \backslash c$
   566 we need to attach an additional bit $Z$ to the front of $r \backslash c$
   522 to indicate that there is one more star iteration. Also the $SEQ$ clause
   567 to indicate that there is one more star iteration. Also the $SEQ$ clause
   523 is more subtle---when $a_1$ is $\textit{bnullable}$ (here
   568 is more subtle---when $a_1$ is $\textit{bnullable}$ (here
  1195 for the regular expression  
  1240 for the regular expression  
  1196 $(a+b)(a+a*)$,
  1241 $(a+b)(a+a*)$,
  1197 if we do derivative with respect to string $aa$,
  1242 if we do derivative with respect to string $aa$,
  1198 we get
  1243 we get
  1199 
  1244 
       
  1245 \subsection{Another Proof Strategy}
  1200 sdddddr does not equal sdsdsdsr sometimes.\\
  1246 sdddddr does not equal sdsdsdsr sometimes.\\
  1201 For example,
  1247 For example,
  1202 
  1248 
  1203 This equicalence class method might still have the potential of proving this,
  1249 This equicalence class method might still have the potential of proving this,
  1204 but not yet
  1250 but not yet