diff -r 0a0c551bb368 -r 79f347cb8b4d etnms/etnms.tex --- a/etnms/etnms.tex Fri Jan 17 23:53:08 2020 +0000 +++ b/etnms/etnms.tex Mon Jan 20 15:51:06 2020 +0000 @@ -494,6 +494,8 @@ basic regular expressions, except that we beed to take care of the bitcodes: + +\iffalse %\begin{definition}{bder} \begin{center} \begin{tabular}{@{}lcl@{}} @@ -516,6 +518,49 @@ \end{center} %\end{definition} +\begin{center} + \begin{tabular}{@{}lcl@{}} + $(\textit{ZERO})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\ + $(_{bs}\textit{ONE})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\ + $(_{bs}\textit{CHAR}\;d)\,\backslash c$ & $\dn$ & + $\textit{if}\;c=d\; \;\textit{then}\; + _{bs}\textit{ONE}\;\textit{else}\;\textit{ZERO}$\\ + $(_{bs}\textit{ALTS}\;as)\,\backslash c$ & $\dn$ & + $_{bs}\textit{ALTS}\;(as.map(\backslash c))$\\ + $(_{bs}\textit{SEQ}\;a_1\,a_2)\,\backslash c$ & $\dn$ & + $\textit{if}\;\textit{bnullable}\,a_1$\\ + & &$\textit{then}\;_{bs}\textit{ALTS}\,List((_{[]}\textit{SEQ}\,(a_1\,\backslash c)\,a_2),$\\ + & &$\phantom{\textit{then}\;_{bs}\textit{ALTS}\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c)))$\\ + & &$\textit{else}\;_{bs}\textit{SEQ}\,(a_1\,\backslash c)\,a_2$\\ + $(_{bs}\textit{STAR}\,a)\,\backslash c$ & $\dn$ & + $_{bs}\textit{SEQ}\;(\textit{fuse}\, [\Z] (r\,\backslash c))\, + (_{bs}\textit{STAR}\,[]\,r)$ +\end{tabular} +\end{center} +%\end{definition} +\fi + +\begin{center} + \begin{tabular}{@{}lcl@{}} + $(\ZERO)\,\backslash c$ & $\dn$ & $\ZERO$\\ + $(_{bs}\ONE)\,\backslash c$ & $\dn$ & $\ZERO$\\ + $(_{bs}{\bf d})\,\backslash c$ & $\dn$ & + $\textit{if}\;c=d\; \;\textit{then}\; + _{bs}\ONE\;\textit{else}\;\ZERO$\\ + $(_{bs}\oplus \;as)\,\backslash c$ & $\dn$ & + $_{bs}\oplus\;(as.map(\backslash c))$\\ + $(_{bs}\;a_1\cdot a_2)\,\backslash c$ & $\dn$ & + $\textit{if}\;\textit{bnullable}\,a_1$\\ + & &$\textit{then}\;_{bs}\oplus\,[(_{[]}\,(a_1\,\backslash c)\cdot\,a_2),$\\ + & &$\phantom{\textit{then},\;_{bs}\oplus\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))]$\\ + & &$\textit{else}\;_{bs}\,(a_1\,\backslash c)\cdot a_2$\\ + $(_{bs}a^*)\,\backslash c$ & $\dn$ & + $_{bs}\;((\textit{fuse}\, [\Z] (r\,\backslash c))\cdot + (_{[]}r^*))$ +\end{tabular} +\end{center} + +%\end{definition} \noindent For instance, when we unfold $\textit{STAR} \; bs \; a$ into a sequence, we need to attach an additional bit $Z$ to the front of $r \backslash c$ @@ -1197,6 +1242,7 @@ if we do derivative with respect to string $aa$, we get +\subsection{Another Proof Strategy} sdddddr does not equal sdsdsdsr sometimes.\\ For example,