--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/parser-combinators/comb1.sc Sat Jul 04 16:58:12 2020 +0100
@@ -0,0 +1,223 @@
+// Parser Combinators: Simple Version
+//====================================
+
+/*
+ Note, in the lectures I did not show the implicit type constraint
+ I : IsSeq, which means that the input type 'I' needs to be
+ a sequence.
+*/
+
+type IsSeq[A] = A => Seq[_]
+
+abstract class Parser[I : IsSeq, T]{
+ def parse(in: I): Set[(T, I)]
+
+ def parse_all(in: I) : Set[T] =
+ for ((hd, tl) <- parse(in);
+ if tl.isEmpty) yield hd
+}
+
+// parser combinators
+
+// sequence parser
+class SeqParser[I : IsSeq, T, S](p: => Parser[I, T],
+ q: => Parser[I, S]) extends Parser[I, (T, S)] {
+ def parse(in: I) =
+ for ((hd1, tl1) <- p.parse(in);
+ (hd2, tl2) <- q.parse(tl1)) yield ((hd1, hd2), tl2)
+}
+
+// alternative parser
+class AltParser[I : IsSeq, T](p: => Parser[I, T],
+ q: => Parser[I, T]) extends Parser[I, T] {
+ def parse(in: I) = p.parse(in) ++ q.parse(in)
+}
+
+// parser map
+class MapParser[I : IsSeq, T, S](p: => Parser[I, T],
+ f: T => S) extends Parser[I, S] {
+ def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl)
+}
+
+// an example of an atomic parser for characters
+case class CharParser(c: Char) extends Parser[String, Char] {
+ def parse(in: String) =
+ if (in != "" && in.head == c) Set((c, in.tail)) else Set()
+}
+
+// an atomic parser for parsing strings according to a regex
+import scala.util.matching.Regex
+
+case class RegexParser(reg: Regex) extends Parser[String, String] {
+ def parse(in: String) = reg.findPrefixMatchOf(in) match {
+ case None => Set()
+ case Some(m) => Set((m.matched, m.after.toString))
+ }
+}
+
+// atomic parsers for numbers and "verbatim" strings
+val NumParser = RegexParser("[0-9]+".r)
+def StrParser(s: String) = RegexParser(Regex.quote(s).r)
+
+// NumParserInt transforms a "string integer" into a propper Int
+// (needs "new" because MapParser is not a case class)
+
+val NumParserInt = new MapParser(NumParser, (s: String) => s.toInt)
+
+
+// the following string interpolation allows us to write
+// StrParser(_some_string_) more conveniently as
+//
+// p"<_some_string_>"
+
+implicit def parser_interpolation(sc: StringContext) = new {
+ def p(args: Any*) = StrParser(sc.s(args:_*))
+}
+
+// more convenient syntax for parser combinators
+implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new {
+ def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q)
+ def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
+ def map[S](f: => T => S) = new MapParser[I, T, S](p, f)
+}
+
+// these implicits allow us to use an infix notation for
+// sequences and alternatives; we also can write the usual
+// map for a MapParser
+
+
+// with this NumParserInt can now be written more conveniently
+// as:
+
+val NumParserInt2 = NumParser.map(s => s.toInt)
+
+
+// A parser for palindromes (just returns them as string)
+lazy val Pal : Parser[String, String] = {
+ (p"a" ~ Pal ~ p"a").map{ case ((x, y), z) => s"$x$y$z" } ||
+ (p"b" ~ Pal ~ p"b").map{ case ((x, y), z) => s"$x$y$z" } ||
+ p"a" || p"b" || p""
+}
+
+// examples
+Pal.parse_all("abaaaba")
+Pal.parse("abaaaba")
+
+println("Palindrome: " + Pal.parse_all("abaaaba"))
+
+// A parser for wellnested parentheses (transforms '(' -> '{' , ')' -> '}' )
+lazy val P : Parser[String, String] =
+ (p"(" ~ P ~ p")" ~ P).map{ case (((_, x), _), y) => "{" + x + "}" + y } || p""
+
+println(P.parse_all("(((()()))())"))
+println(P.parse_all("(((()()))()))"))
+println(P.parse_all(")("))
+println(P.parse_all("()"))
+
+// A parser for arithmetic expressions (Terms and Factors)
+
+lazy val E: Parser[String, Int] =
+ (T ~ p"+" ~ E).map{ case ((x, _), z) => x + z } ||
+ (T ~ p"-" ~ E).map{ case ((x, _), z) => x - z } || T
+lazy val T: Parser[String, Int] =
+ (F ~ p"*" ~ T).map{ case ((x, _), z) => x * z } || F
+lazy val F: Parser[String, Int] =
+ (p"(" ~ E ~ p")").map{ case ((_, y), _) => y } || NumParserInt
+
+/* same parser but producing a string
+lazy val E: Parser[String, String] =
+ (T ~ "+" ~ E).map{ case x ~ y ~ z => "(" + x + ")+(" + z + ")"} || T
+lazy val T: Parser[String, String] =
+ (F ~ "*" ~ T).map{ case x ~ y ~ z => "(" + x + ")*("+ z + ")"} || F
+lazy val F: Parser[String, String] =
+ ("(" ~ E ~ ")").map{ case x ~ y ~ z => y } || NumParser
+*/
+
+println(E.parse_all("1+3+4"))
+println(E.parse("1+3+4"))
+println(E.parse_all("4*2+3"))
+println(E.parse_all("4*(2+3)"))
+println(E.parse_all("(4)*((2+3))"))
+println(E.parse_all("4/2+3"))
+println(E.parse("1 + 2 * 3"))
+println(E.parse_all("(1+2)+3"))
+println(E.parse_all("1+2+3"))
+
+
+// with parser combinators (and other parsing algorithms)
+// no left-recursion is allowed, otherwise the will loop
+
+lazy val EL: Parser[String, Int] =
+ ((EL ~ p"+" ~ EL).map{ case ((x, y), z) => x + z} ||
+ (EL ~ p"*" ~ EL).map{ case ((x, y), z) => x * z} ||
+ (p"(" ~ EL ~ p")").map{ case ((x, y), z) => y} ||
+ NumParserInt)
+
+// this will run forever:
+//println(EL.parse_all("1+2+3"))
+
+
+// non-ambiguous vs ambiguous grammars
+
+// ambiguous
+lazy val S : Parser[String, String] =
+ (p"1" ~ S ~ S).map{ case ((x, y), z) => x + y + z } || p""
+
+println(time(S.parse("1" * 10)))
+println(time(S.parse_all("1" * 10)))
+
+// non-ambiguous
+lazy val U : Parser[String, String] =
+ (p"1" ~ U).map{ case (x, y) => x + y } || p""
+
+println(time(U.parse("1" * 10)))
+println(time(U.parse_all("1" * 10)))
+println(U.parse("1" * 25))
+
+U.parse("11")
+U.parse("11111")
+U.parse("11011")
+
+U.parse_all("1" * 100)
+U.parse_all("1" * 100 + "0")
+
+// you can see the difference in second example
+//S.parse_all("1" * 100) // succeeds
+//S.parse_all("1" * 100 + "0") // fails
+
+
+// A variant which counts how many 1s are parsed
+lazy val UCount : Parser[String, Int] =
+ (p"1" ~ UCount).map[Int]{ case (_, y) => y + 1 } || p"".map[Int]{ _ => 0 }
+
+println(UCount.parse("11111"))
+println(UCount.parse_all("11111"))
+
+// Two single character parsers
+lazy val One : Parser[String, String] = p"a"
+lazy val Two : Parser[String, String] = p"b"
+
+One.parse("a")
+One.parse("aaa")
+
+// note how the pairs nest to the left with sequence parsers
+(One ~ One).parse("aaa")
+(One ~ One ~ One).parse("aaa")
+(One ~ One ~ One ~ One).parse("aaaa")
+
+(One || Two).parse("aaa")
+
+
+
+// a problem with the arithmetic expression parser: it
+// gets vert slow with deeply nested parentheses
+
+println("Runtime problem")
+println(E.parse("1"))
+println(E.parse("(1)"))
+println(E.parse("((1))"))
+//println(E.parse("(((1)))"))
+//println(E.parse("((((1))))"))
+//println(E.parse("((((((1))))))"))
+//println(E.parse("(((((((1)))))))"))
+//println(E.parse("((((((((1)))))))"))
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/parser-combinators/comb2.sc Sat Jul 04 16:58:12 2020 +0100
@@ -0,0 +1,263 @@
+// Parser Combinators: Simple Version
+//====================================
+
+
+// more convenience for the map parsers later on
+case class ~[+A, +B](_1: A, _2: B)
+
+/*
+ Note, in the lectures I did not show the implicit type constraint
+ I : IsSeq, which means that the input type 'I' needs to be
+ a sequence.
+*/
+
+type IsSeq[A] = A => Seq[_]
+
+abstract class Parser[I : IsSeq, T]{
+ def parse(in: I): Set[(T, I)]
+
+ def parse_all(in: I) : Set[T] =
+ for ((hd, tl) <- parse(in);
+ if tl.isEmpty) yield hd
+}
+
+// parser combinators
+
+// sequence parser
+class SeqParser[I : IsSeq, T, S](p: => Parser[I, T],
+ q: => Parser[I, S]) extends Parser[I, ~[T, S]] {
+ def parse(in: I) =
+ for ((hd1, tl1) <- p.parse(in);
+ (hd2, tl2) <- q.parse(tl1)) yield (new ~(hd1, hd2), tl2)
+}
+
+// alternative parser
+class AltParser[I : IsSeq, T](p: => Parser[I, T],
+ q: => Parser[I, T]) extends Parser[I, T] {
+ def parse(in: I) = p.parse(in) ++ q.parse(in)
+}
+
+// map parser
+class MapParser[I : IsSeq, T, S](p: => Parser[I, T],
+ f: T => S) extends Parser[I, S] {
+ def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl)
+}
+
+
+
+// atomic parser for (particular) strings
+case class StrParser(s: String) extends Parser[String, String] {
+ def parse(sb: String) = {
+ val (prefix, suffix) = sb.splitAt(s.length)
+ if (prefix == s) Set((prefix, suffix)) else Set()
+ }
+}
+
+// atomic parser for identifiers (variable names)
+case object IdParser extends Parser[String, String] {
+ val reg = "[a-z][a-z,0-9]*".r
+ def parse(sb: String) = reg.findPrefixOf(sb) match {
+ case None => Set()
+ case Some(s) => Set(sb.splitAt(s.length))
+ }
+}
+
+
+// atomic parser for numbers (transformed into ints)
+case object NumParser extends Parser[String, Int] {
+ val reg = "[0-9]+".r
+ def parse(sb: String) = reg.findPrefixOf(sb) match {
+ case None => Set()
+ case Some(s) => {
+ val (hd, tl) = sb.splitAt(s.length)
+ Set((hd.toInt, tl))
+ }
+ }
+}
+
+// the following string interpolation allows us to write
+// StrParser(_some_string_) more conveniently as
+//
+// p"<_some_string_>"
+
+implicit def parser_interpolation(sc: StringContext) = new {
+ def p(args: Any*) = StrParser(sc.s(args:_*))
+}
+
+// more convenient syntax for parser combinators
+implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new {
+ def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q)
+ def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
+ def map[S](f: => T => S) = new MapParser[I, T, S](p, f)
+}
+
+
+
+// the abstract syntax trees for the WHILE language
+abstract class Stmt
+abstract class AExp
+abstract class BExp
+
+type Block = List[Stmt]
+
+case object Skip extends Stmt
+case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt
+case class While(b: BExp, bl: Block) extends Stmt
+case class Assign(s: String, a: AExp) extends Stmt
+case class Write(s: String) extends Stmt
+
+case class Var(s: String) extends AExp
+case class Num(i: Int) extends AExp
+case class Aop(o: String, a1: AExp, a2: AExp) extends AExp
+
+case object True extends BExp
+case object False extends BExp
+case class Bop(o: String, a1: AExp, a2: AExp) extends BExp
+case class And(b1: BExp, b2: BExp) extends BExp
+case class Or(b1: BExp, b2: BExp) extends BExp
+
+
+// arithmetic expressions
+lazy val AExp: Parser[String, AExp] =
+ (Te ~ p"+" ~ AExp).map[AExp]{ case x ~ _ ~ z => Aop("+", x, z) } ||
+ (Te ~ p"-" ~ AExp).map[AExp]{ case x ~ _ ~ z => Aop("-", x, z) } || Te
+lazy val Te: Parser[String, AExp] =
+ (Fa ~ p"*" ~ Te).map[AExp]{ case x ~ _ ~ z => Aop("*", x, z) } ||
+ (Fa ~ p"/" ~ Te).map[AExp]{ case x ~ _ ~ z => Aop("/", x, z) } || Fa
+lazy val Fa: Parser[String, AExp] =
+ (p"(" ~ AExp ~ p")").map{ case _ ~ y ~ _ => y } ||
+ IdParser.map(Var) ||
+ NumParser.map(Num)
+
+// boolean expressions with some simple nesting
+lazy val BExp: Parser[String, BExp] =
+ (AExp ~ p"==" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("==", x, z) } ||
+ (AExp ~ p"!=" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("!=", x, z) } ||
+ (AExp ~ p"<" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("<", x, z) } ||
+ (AExp ~ p">" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop(">", x, z) } ||
+ (p"(" ~ BExp ~ p")" ~ p"&&" ~ BExp).map[BExp]{ case _ ~ y ~ _ ~ _ ~ v => And(y, v) } ||
+ (p"(" ~ BExp ~ p")" ~ p"||" ~ BExp).map[BExp]{ case _ ~ y ~ _ ~ _ ~ v => Or(y, v) } ||
+ (p"true".map[BExp]{ _ => True }) ||
+ (p"false".map[BExp]{ _ => False }) ||
+ (p"(" ~ BExp ~ p")").map[BExp]{ case _ ~ x ~ _ => x }
+
+// statement
+lazy val Stmt: Parser[String, Stmt] =
+ ((p"skip".map[Stmt]{_ => Skip }) ||
+ (IdParser ~ p":=" ~ AExp).map[Stmt]{ case x ~ _ ~ z => Assign(x, z) } ||
+ (p"write(" ~ IdParser ~ p")").map[Stmt]{ case _ ~ y ~ _ => Write(y) } ||
+ (p"if" ~ BExp ~ p"then" ~ Block ~ p"else" ~ Block)
+ .map[Stmt]{ case _ ~ y ~ _ ~ u ~ _ ~ w => If(y, u, w) } ||
+ (p"while" ~ BExp ~ p"do" ~ Block).map[Stmt]{ case _ ~ y ~ _ ~ w => While(y, w) })
+
+// statements
+lazy val Stmts: Parser[String, Block] =
+ (Stmt ~ p";" ~ Stmts).map[Block]{ case x ~ _ ~ z => x :: z } ||
+ (Stmt.map[Block]{ s => List(s) })
+
+// blocks (enclosed in curly braces)
+lazy val Block: Parser[String, Block] =
+ ((p"{" ~ Stmts ~ p"}").map{ case _ ~ y ~ _ => y } ||
+ (Stmt.map(s => List(s))))
+
+
+// Examples
+Stmts.parse_all("x2:=5+3;")
+Block.parse_all("{x:=5;y:=8}")
+Block.parse_all("if(false)then{x:=5}else{x:=10}")
+
+
+val fib = """n := 10;
+ minus1 := 0;
+ minus2 := 1;
+ temp := 0;
+ while (n > 0) do {
+ temp := minus2;
+ minus2 := minus1 + minus2;
+ minus1 := temp;
+ n := n - 1
+ };
+ result := minus2""".replaceAll("\\s+", "")
+
+Stmts.parse_all(fib)
+
+
+// an interpreter for the WHILE language
+type Env = Map[String, Int]
+
+def eval_aexp(a: AExp, env: Env) : Int = a match {
+ case Num(i) => i
+ case Var(s) => env(s)
+ case Aop("+", a1, a2) => eval_aexp(a1, env) + eval_aexp(a2, env)
+ case Aop("-", a1, a2) => eval_aexp(a1, env) - eval_aexp(a2, env)
+ case Aop("*", a1, a2) => eval_aexp(a1, env) * eval_aexp(a2, env)
+ case Aop("/", a1, a2) => eval_aexp(a1, env) / eval_aexp(a2, env)
+}
+
+def eval_bexp(b: BExp, env: Env) : Boolean = b match {
+ case True => true
+ case False => false
+ case Bop("==", a1, a2) => eval_aexp(a1, env) == eval_aexp(a2, env)
+ case Bop("!=", a1, a2) => !(eval_aexp(a1, env) == eval_aexp(a2, env))
+ case Bop(">", a1, a2) => eval_aexp(a1, env) > eval_aexp(a2, env)
+ case Bop("<", a1, a2) => eval_aexp(a1, env) < eval_aexp(a2, env)
+ case And(b1, b2) => eval_bexp(b1, env) && eval_bexp(b2, env)
+ case Or(b1, b2) => eval_bexp(b1, env) || eval_bexp(b2, env)
+}
+
+def eval_stmt(s: Stmt, env: Env) : Env = s match {
+ case Skip => env
+ case Assign(x, a) => env + (x -> eval_aexp(a, env))
+ case If(b, bl1, bl2) => if (eval_bexp(b, env)) eval_bl(bl1, env) else eval_bl(bl2, env)
+ case While(b, bl) =>
+ if (eval_bexp(b, env)) eval_stmt(While(b, bl), eval_bl(bl, env))
+ else env
+ case Write(x) => { println(env(x)) ; env }
+}
+
+def eval_bl(bl: Block, env: Env) : Env = bl match {
+ case Nil => env
+ case s::bl => eval_bl(bl, eval_stmt(s, env))
+}
+
+def eval(bl: Block) : Env = eval_bl(bl, Map())
+
+// parse + evaluate fib program; then lookup what is
+// stored under the variable result
+println(eval(Stmts.parse_all(fib).head)("result"))
+
+
+// more examles
+
+// calculate and print all factors bigger
+// than 1 and smaller than n
+println("Factors")
+
+val factors =
+ """n := 12;
+ f := 2;
+ while (f < n / 2 + 1) do {
+ if ((n / f) * f == n) then { write(f) } else { skip };
+ f := f + 1
+ }""".replaceAll("\\s+", "")
+
+println(eval(Stmts.parse_all(factors).head))
+
+// calculate all prime numbers up to a number
+println("Primes")
+
+val primes =
+ """end := 100;
+ n := 2;
+ while (n < end) do {
+ f := 2;
+ tmp := 0;
+ while ((f < n / 2 + 1) && (tmp == 0)) do {
+ if ((n / f) * f == n) then { tmp := 1 } else { skip };
+ f := f + 1
+ };
+ if (tmp == 0) then { write(n) } else { skip };
+ n := n + 1
+ }""".replaceAll("\\s+", "")
+
+println(eval(Stmts.parse_all(primes).head))