# HG changeset patch # User Christian Urban # Date 1593878292 -3600 # Node ID c7bdd7eac4cb09edeb231431e6c675d04fb6f9a7 # Parent 90946a2eb48ad4aaa483fdd82ee5f0690f792884 updated diff -r 90946a2eb48a -r c7bdd7eac4cb progs/parser-combinators/comb1.sc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/parser-combinators/comb1.sc Sat Jul 04 16:58:12 2020 +0100 @@ -0,0 +1,223 @@ +// Parser Combinators: Simple Version +//==================================== + +/* + Note, in the lectures I did not show the implicit type constraint + I : IsSeq, which means that the input type 'I' needs to be + a sequence. +*/ + +type IsSeq[A] = A => Seq[_] + +abstract class Parser[I : IsSeq, T]{ + def parse(in: I): Set[(T, I)] + + def parse_all(in: I) : Set[T] = + for ((hd, tl) <- parse(in); + if tl.isEmpty) yield hd +} + +// parser combinators + +// sequence parser +class SeqParser[I : IsSeq, T, S](p: => Parser[I, T], + q: => Parser[I, S]) extends Parser[I, (T, S)] { + def parse(in: I) = + for ((hd1, tl1) <- p.parse(in); + (hd2, tl2) <- q.parse(tl1)) yield ((hd1, hd2), tl2) +} + +// alternative parser +class AltParser[I : IsSeq, T](p: => Parser[I, T], + q: => Parser[I, T]) extends Parser[I, T] { + def parse(in: I) = p.parse(in) ++ q.parse(in) +} + +// parser map +class MapParser[I : IsSeq, T, S](p: => Parser[I, T], + f: T => S) extends Parser[I, S] { + def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl) +} + +// an example of an atomic parser for characters +case class CharParser(c: Char) extends Parser[String, Char] { + def parse(in: String) = + if (in != "" && in.head == c) Set((c, in.tail)) else Set() +} + +// an atomic parser for parsing strings according to a regex +import scala.util.matching.Regex + +case class RegexParser(reg: Regex) extends Parser[String, String] { + def parse(in: String) = reg.findPrefixMatchOf(in) match { + case None => Set() + case Some(m) => Set((m.matched, m.after.toString)) + } +} + +// atomic parsers for numbers and "verbatim" strings +val NumParser = RegexParser("[0-9]+".r) +def StrParser(s: String) = RegexParser(Regex.quote(s).r) + +// NumParserInt transforms a "string integer" into a propper Int +// (needs "new" because MapParser is not a case class) + +val NumParserInt = new MapParser(NumParser, (s: String) => s.toInt) + + +// the following string interpolation allows us to write +// StrParser(_some_string_) more conveniently as +// +// p"<_some_string_>" + +implicit def parser_interpolation(sc: StringContext) = new { + def p(args: Any*) = StrParser(sc.s(args:_*)) +} + +// more convenient syntax for parser combinators +implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new { + def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q) + def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) + def map[S](f: => T => S) = new MapParser[I, T, S](p, f) +} + +// these implicits allow us to use an infix notation for +// sequences and alternatives; we also can write the usual +// map for a MapParser + + +// with this NumParserInt can now be written more conveniently +// as: + +val NumParserInt2 = NumParser.map(s => s.toInt) + + +// A parser for palindromes (just returns them as string) +lazy val Pal : Parser[String, String] = { + (p"a" ~ Pal ~ p"a").map{ case ((x, y), z) => s"$x$y$z" } || + (p"b" ~ Pal ~ p"b").map{ case ((x, y), z) => s"$x$y$z" } || + p"a" || p"b" || p"" +} + +// examples +Pal.parse_all("abaaaba") +Pal.parse("abaaaba") + +println("Palindrome: " + Pal.parse_all("abaaaba")) + +// A parser for wellnested parentheses (transforms '(' -> '{' , ')' -> '}' ) +lazy val P : Parser[String, String] = + (p"(" ~ P ~ p")" ~ P).map{ case (((_, x), _), y) => "{" + x + "}" + y } || p"" + +println(P.parse_all("(((()()))())")) +println(P.parse_all("(((()()))()))")) +println(P.parse_all(")(")) +println(P.parse_all("()")) + +// A parser for arithmetic expressions (Terms and Factors) + +lazy val E: Parser[String, Int] = + (T ~ p"+" ~ E).map{ case ((x, _), z) => x + z } || + (T ~ p"-" ~ E).map{ case ((x, _), z) => x - z } || T +lazy val T: Parser[String, Int] = + (F ~ p"*" ~ T).map{ case ((x, _), z) => x * z } || F +lazy val F: Parser[String, Int] = + (p"(" ~ E ~ p")").map{ case ((_, y), _) => y } || NumParserInt + +/* same parser but producing a string +lazy val E: Parser[String, String] = + (T ~ "+" ~ E).map{ case x ~ y ~ z => "(" + x + ")+(" + z + ")"} || T +lazy val T: Parser[String, String] = + (F ~ "*" ~ T).map{ case x ~ y ~ z => "(" + x + ")*("+ z + ")"} || F +lazy val F: Parser[String, String] = + ("(" ~ E ~ ")").map{ case x ~ y ~ z => y } || NumParser +*/ + +println(E.parse_all("1+3+4")) +println(E.parse("1+3+4")) +println(E.parse_all("4*2+3")) +println(E.parse_all("4*(2+3)")) +println(E.parse_all("(4)*((2+3))")) +println(E.parse_all("4/2+3")) +println(E.parse("1 + 2 * 3")) +println(E.parse_all("(1+2)+3")) +println(E.parse_all("1+2+3")) + + +// with parser combinators (and other parsing algorithms) +// no left-recursion is allowed, otherwise the will loop + +lazy val EL: Parser[String, Int] = + ((EL ~ p"+" ~ EL).map{ case ((x, y), z) => x + z} || + (EL ~ p"*" ~ EL).map{ case ((x, y), z) => x * z} || + (p"(" ~ EL ~ p")").map{ case ((x, y), z) => y} || + NumParserInt) + +// this will run forever: +//println(EL.parse_all("1+2+3")) + + +// non-ambiguous vs ambiguous grammars + +// ambiguous +lazy val S : Parser[String, String] = + (p"1" ~ S ~ S).map{ case ((x, y), z) => x + y + z } || p"" + +println(time(S.parse("1" * 10))) +println(time(S.parse_all("1" * 10))) + +// non-ambiguous +lazy val U : Parser[String, String] = + (p"1" ~ U).map{ case (x, y) => x + y } || p"" + +println(time(U.parse("1" * 10))) +println(time(U.parse_all("1" * 10))) +println(U.parse("1" * 25)) + +U.parse("11") +U.parse("11111") +U.parse("11011") + +U.parse_all("1" * 100) +U.parse_all("1" * 100 + "0") + +// you can see the difference in second example +//S.parse_all("1" * 100) // succeeds +//S.parse_all("1" * 100 + "0") // fails + + +// A variant which counts how many 1s are parsed +lazy val UCount : Parser[String, Int] = + (p"1" ~ UCount).map[Int]{ case (_, y) => y + 1 } || p"".map[Int]{ _ => 0 } + +println(UCount.parse("11111")) +println(UCount.parse_all("11111")) + +// Two single character parsers +lazy val One : Parser[String, String] = p"a" +lazy val Two : Parser[String, String] = p"b" + +One.parse("a") +One.parse("aaa") + +// note how the pairs nest to the left with sequence parsers +(One ~ One).parse("aaa") +(One ~ One ~ One).parse("aaa") +(One ~ One ~ One ~ One).parse("aaaa") + +(One || Two).parse("aaa") + + + +// a problem with the arithmetic expression parser: it +// gets vert slow with deeply nested parentheses + +println("Runtime problem") +println(E.parse("1")) +println(E.parse("(1)")) +println(E.parse("((1))")) +//println(E.parse("(((1)))")) +//println(E.parse("((((1))))")) +//println(E.parse("((((((1))))))")) +//println(E.parse("(((((((1)))))))")) +//println(E.parse("((((((((1)))))))")) diff -r 90946a2eb48a -r c7bdd7eac4cb progs/parser-combinators/comb2.sc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/parser-combinators/comb2.sc Sat Jul 04 16:58:12 2020 +0100 @@ -0,0 +1,263 @@ +// Parser Combinators: Simple Version +//==================================== + + +// more convenience for the map parsers later on +case class ~[+A, +B](_1: A, _2: B) + +/* + Note, in the lectures I did not show the implicit type constraint + I : IsSeq, which means that the input type 'I' needs to be + a sequence. +*/ + +type IsSeq[A] = A => Seq[_] + +abstract class Parser[I : IsSeq, T]{ + def parse(in: I): Set[(T, I)] + + def parse_all(in: I) : Set[T] = + for ((hd, tl) <- parse(in); + if tl.isEmpty) yield hd +} + +// parser combinators + +// sequence parser +class SeqParser[I : IsSeq, T, S](p: => Parser[I, T], + q: => Parser[I, S]) extends Parser[I, ~[T, S]] { + def parse(in: I) = + for ((hd1, tl1) <- p.parse(in); + (hd2, tl2) <- q.parse(tl1)) yield (new ~(hd1, hd2), tl2) +} + +// alternative parser +class AltParser[I : IsSeq, T](p: => Parser[I, T], + q: => Parser[I, T]) extends Parser[I, T] { + def parse(in: I) = p.parse(in) ++ q.parse(in) +} + +// map parser +class MapParser[I : IsSeq, T, S](p: => Parser[I, T], + f: T => S) extends Parser[I, S] { + def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl) +} + + + +// atomic parser for (particular) strings +case class StrParser(s: String) extends Parser[String, String] { + def parse(sb: String) = { + val (prefix, suffix) = sb.splitAt(s.length) + if (prefix == s) Set((prefix, suffix)) else Set() + } +} + +// atomic parser for identifiers (variable names) +case object IdParser extends Parser[String, String] { + val reg = "[a-z][a-z,0-9]*".r + def parse(sb: String) = reg.findPrefixOf(sb) match { + case None => Set() + case Some(s) => Set(sb.splitAt(s.length)) + } +} + + +// atomic parser for numbers (transformed into ints) +case object NumParser extends Parser[String, Int] { + val reg = "[0-9]+".r + def parse(sb: String) = reg.findPrefixOf(sb) match { + case None => Set() + case Some(s) => { + val (hd, tl) = sb.splitAt(s.length) + Set((hd.toInt, tl)) + } + } +} + +// the following string interpolation allows us to write +// StrParser(_some_string_) more conveniently as +// +// p"<_some_string_>" + +implicit def parser_interpolation(sc: StringContext) = new { + def p(args: Any*) = StrParser(sc.s(args:_*)) +} + +// more convenient syntax for parser combinators +implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new { + def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q) + def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) + def map[S](f: => T => S) = new MapParser[I, T, S](p, f) +} + + + +// the abstract syntax trees for the WHILE language +abstract class Stmt +abstract class AExp +abstract class BExp + +type Block = List[Stmt] + +case object Skip extends Stmt +case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt +case class While(b: BExp, bl: Block) extends Stmt +case class Assign(s: String, a: AExp) extends Stmt +case class Write(s: String) extends Stmt + +case class Var(s: String) extends AExp +case class Num(i: Int) extends AExp +case class Aop(o: String, a1: AExp, a2: AExp) extends AExp + +case object True extends BExp +case object False extends BExp +case class Bop(o: String, a1: AExp, a2: AExp) extends BExp +case class And(b1: BExp, b2: BExp) extends BExp +case class Or(b1: BExp, b2: BExp) extends BExp + + +// arithmetic expressions +lazy val AExp: Parser[String, AExp] = + (Te ~ p"+" ~ AExp).map[AExp]{ case x ~ _ ~ z => Aop("+", x, z) } || + (Te ~ p"-" ~ AExp).map[AExp]{ case x ~ _ ~ z => Aop("-", x, z) } || Te +lazy val Te: Parser[String, AExp] = + (Fa ~ p"*" ~ Te).map[AExp]{ case x ~ _ ~ z => Aop("*", x, z) } || + (Fa ~ p"/" ~ Te).map[AExp]{ case x ~ _ ~ z => Aop("/", x, z) } || Fa +lazy val Fa: Parser[String, AExp] = + (p"(" ~ AExp ~ p")").map{ case _ ~ y ~ _ => y } || + IdParser.map(Var) || + NumParser.map(Num) + +// boolean expressions with some simple nesting +lazy val BExp: Parser[String, BExp] = + (AExp ~ p"==" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("==", x, z) } || + (AExp ~ p"!=" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("!=", x, z) } || + (AExp ~ p"<" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop("<", x, z) } || + (AExp ~ p">" ~ AExp).map[BExp]{ case x ~ _ ~ z => Bop(">", x, z) } || + (p"(" ~ BExp ~ p")" ~ p"&&" ~ BExp).map[BExp]{ case _ ~ y ~ _ ~ _ ~ v => And(y, v) } || + (p"(" ~ BExp ~ p")" ~ p"||" ~ BExp).map[BExp]{ case _ ~ y ~ _ ~ _ ~ v => Or(y, v) } || + (p"true".map[BExp]{ _ => True }) || + (p"false".map[BExp]{ _ => False }) || + (p"(" ~ BExp ~ p")").map[BExp]{ case _ ~ x ~ _ => x } + +// statement +lazy val Stmt: Parser[String, Stmt] = + ((p"skip".map[Stmt]{_ => Skip }) || + (IdParser ~ p":=" ~ AExp).map[Stmt]{ case x ~ _ ~ z => Assign(x, z) } || + (p"write(" ~ IdParser ~ p")").map[Stmt]{ case _ ~ y ~ _ => Write(y) } || + (p"if" ~ BExp ~ p"then" ~ Block ~ p"else" ~ Block) + .map[Stmt]{ case _ ~ y ~ _ ~ u ~ _ ~ w => If(y, u, w) } || + (p"while" ~ BExp ~ p"do" ~ Block).map[Stmt]{ case _ ~ y ~ _ ~ w => While(y, w) }) + +// statements +lazy val Stmts: Parser[String, Block] = + (Stmt ~ p";" ~ Stmts).map[Block]{ case x ~ _ ~ z => x :: z } || + (Stmt.map[Block]{ s => List(s) }) + +// blocks (enclosed in curly braces) +lazy val Block: Parser[String, Block] = + ((p"{" ~ Stmts ~ p"}").map{ case _ ~ y ~ _ => y } || + (Stmt.map(s => List(s)))) + + +// Examples +Stmts.parse_all("x2:=5+3;") +Block.parse_all("{x:=5;y:=8}") +Block.parse_all("if(false)then{x:=5}else{x:=10}") + + +val fib = """n := 10; + minus1 := 0; + minus2 := 1; + temp := 0; + while (n > 0) do { + temp := minus2; + minus2 := minus1 + minus2; + minus1 := temp; + n := n - 1 + }; + result := minus2""".replaceAll("\\s+", "") + +Stmts.parse_all(fib) + + +// an interpreter for the WHILE language +type Env = Map[String, Int] + +def eval_aexp(a: AExp, env: Env) : Int = a match { + case Num(i) => i + case Var(s) => env(s) + case Aop("+", a1, a2) => eval_aexp(a1, env) + eval_aexp(a2, env) + case Aop("-", a1, a2) => eval_aexp(a1, env) - eval_aexp(a2, env) + case Aop("*", a1, a2) => eval_aexp(a1, env) * eval_aexp(a2, env) + case Aop("/", a1, a2) => eval_aexp(a1, env) / eval_aexp(a2, env) +} + +def eval_bexp(b: BExp, env: Env) : Boolean = b match { + case True => true + case False => false + case Bop("==", a1, a2) => eval_aexp(a1, env) == eval_aexp(a2, env) + case Bop("!=", a1, a2) => !(eval_aexp(a1, env) == eval_aexp(a2, env)) + case Bop(">", a1, a2) => eval_aexp(a1, env) > eval_aexp(a2, env) + case Bop("<", a1, a2) => eval_aexp(a1, env) < eval_aexp(a2, env) + case And(b1, b2) => eval_bexp(b1, env) && eval_bexp(b2, env) + case Or(b1, b2) => eval_bexp(b1, env) || eval_bexp(b2, env) +} + +def eval_stmt(s: Stmt, env: Env) : Env = s match { + case Skip => env + case Assign(x, a) => env + (x -> eval_aexp(a, env)) + case If(b, bl1, bl2) => if (eval_bexp(b, env)) eval_bl(bl1, env) else eval_bl(bl2, env) + case While(b, bl) => + if (eval_bexp(b, env)) eval_stmt(While(b, bl), eval_bl(bl, env)) + else env + case Write(x) => { println(env(x)) ; env } +} + +def eval_bl(bl: Block, env: Env) : Env = bl match { + case Nil => env + case s::bl => eval_bl(bl, eval_stmt(s, env)) +} + +def eval(bl: Block) : Env = eval_bl(bl, Map()) + +// parse + evaluate fib program; then lookup what is +// stored under the variable result +println(eval(Stmts.parse_all(fib).head)("result")) + + +// more examles + +// calculate and print all factors bigger +// than 1 and smaller than n +println("Factors") + +val factors = + """n := 12; + f := 2; + while (f < n / 2 + 1) do { + if ((n / f) * f == n) then { write(f) } else { skip }; + f := f + 1 + }""".replaceAll("\\s+", "") + +println(eval(Stmts.parse_all(factors).head)) + +// calculate all prime numbers up to a number +println("Primes") + +val primes = + """end := 100; + n := 2; + while (n < end) do { + f := 2; + tmp := 0; + while ((f < n / 2 + 1) && (tmp == 0)) do { + if ((n / f) * f == n) then { tmp := 1 } else { skip }; + f := f + 1 + }; + if (tmp == 0) then { write(n) } else { skip }; + n := n + 1 + }""".replaceAll("\\s+", "") + +println(eval(Stmts.parse_all(primes).head)) diff -r 90946a2eb48a -r c7bdd7eac4cb progs/while-compiler-arrays/compile_bfc.sc --- a/progs/while-compiler-arrays/compile_bfc.sc Tue Jun 30 01:31:38 2020 +0100 +++ b/progs/while-compiler-arrays/compile_bfc.sc Sat Jul 04 16:58:12 2020 +0100 @@ -454,4 +454,7 @@ // @doc(" All benchmarks.") @main -def all() = { bfc0(); bfc1(); bfc2(); bfc3(); bfc4() } \ No newline at end of file +def all() = { bfc0(); bfc1(); bfc2(); bfc3(); bfc4() } + + +