fixed typo
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Mon, 06 Oct 2014 20:55:16 +0100
changeset 266 ae039d6ae3f2
parent 265 332fbe9c91ab
child 267 a1544b804d1e
fixed typo
handouts/notation.pdf
handouts/notation.tex
Binary file handouts/notation.pdf has changed
--- a/handouts/notation.tex	Mon Oct 06 00:46:18 2014 +0100
+++ b/handouts/notation.tex	Mon Oct 06 20:55:16 2014 +0100
@@ -132,7 +132,7 @@
 \]
 
 \noindent The notation $\in$ means \emph{element of}, so $1
-\in \{1, 2, 3\}$ is true and $3 \in \{1, 2, 3\}$ is false.
+\in \{1, 2, 3\}$ is true and $4 \in \{1, 2, 3\}$ is false.
 Sets can potentially have infinitely many elements. For
 example the set of all natural numbers $\{0, 1, 2, \ldots\}$
 is infinite. This set is often also abbreviated as