Binary file hws/hw09.pdf has changed
--- a/hws/hw09.tex Fri Nov 28 13:11:17 2014 +0000
+++ b/hws/hw09.tex Fri Nov 28 13:47:32 2014 +0000
@@ -11,65 +11,65 @@
recursion}, when such an optimization can be applied and
why it is a benefit?
-\item It is true (I confirmed it) that
-
-\begin{center} if $\varnothing$ does not occur in $r$
-\;\;then\;\;$L(r) \not= \{\}$
-\end{center}
-
-\noindent
-holds, or equivalently
-
-\begin{center}
-$L(r) = \{\}$ \;\;implies\;\; $\varnothing$ occurs in $r$.
-\end{center}
-
-\noindent
-You can prove either version by induction on $r$. The best way to
-make more formal what is meant by `$\varnothing$ occurs in $r$', you can define
-the following function:
-
-\begin{center}
-\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
-$occurs(\varnothing)$ & $\dn$ & $true$\\
-$occurs(\epsilon)$ & $\dn$ & $f\!alse$\\
-$occurs (c)$ & $\dn$ & $f\!alse$\\
-$occurs (r_1 + r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
-$occurs (r_1 \cdot r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
-$occurs (r^*)$ & $\dn$ & $occurs(r)$ \\
-\end{tabular}
-\end{center}
-
-\noindent
-Now you can prove
-
-\begin{center}
-$L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
-\end{center}
-
-\noindent
-The interesting cases are $r_1 + r_2$ and $r^*$.
-The other direction is not true, that is if $occurs(r)$ then $L(r) = \{\}$. A counter example
-is $\varnothing + a$: although $\varnothing$ occurs in this regular expression, the corresponding
-language is not empty. The obvious extension to include the not-regular expression, $\sim r$,
-also leads to an incorrect statement. Suppose we add the clause
-
-\begin{center}
-\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
-$occurs(\sim r)$ & $\dn$ & $occurs(r)$
-\end{tabular}
-\end{center}
-
-\noindent
-to the definition above, then it will not be true that
-
-\begin{center}
-$L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
-\end{center}
-
-\noindent
-Assume the alphabet contains just $a$ and $b$, find a counter example to this
-property.
+% \item It is true (I confirmed it) that
+%
+% \begin{center} if $\varnothing$ does not occur in $r$
+% \;\;then\;\;$L(r) \not= \{\}$
+% \end{center}
+%
+% \noindent
+% holds, or equivalently
+%
+% \begin{center}
+% $L(r) = \{\}$ \;\;implies\;\; $\varnothing$ occurs in $r$.
+% \end{center}
+%
+% \noindent
+% You can prove either version by induction on $r$. The best way to
+% make more formal what is meant by `$\varnothing$ occurs in $r$', you can define
+% the following function:
+%
+% \begin{center}
+% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
+% $occurs(\varnothing)$ & $\dn$ & $true$\\
+% $occurs(\epsilon)$ & $\dn$ & $f\!alse$\\
+% $occurs (c)$ & $\dn$ & $f\!alse$\\
+% $occurs (r_1 + r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
+% $occurs (r_1 \cdot r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
+% $occurs (r^*)$ & $\dn$ & $occurs(r)$ \\
+% \end{tabular}
+% \end{center}
+%
+% \noindent
+% Now you can prove
+%
+% \begin{center}
+% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
+% \end{center}
+%
+% \noindent
+% The interesting cases are $r_1 + r_2$ and $r^*$.
+% The other direction is not true, that is if $occurs(r)$ then $L(r) = \{\}$. A counter example
+% is $\varnothing + a$: although $\varnothing$ occurs in this regular expression, the corresponding
+% language is not empty. The obvious extension to include the not-regular expression, $\sim r$,
+% also leads to an incorrect statement. Suppose we add the clause
+%
+% \begin{center}
+% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
+% $occurs(\sim r)$ & $\dn$ & $occurs(r)$
+% \end{tabular}
+% \end{center}
+%
+% \noindent
+% to the definition above, then it will not be true that
+%
+% \begin{center}
+% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
+% \end{center}
+%
+% \noindent
+% Assume the alphabet contains just $a$ and $b$, find a counter example to this
+% property.
\end{enumerate}