# HG changeset patch # User Christian Urban # Date 1417182452 0 # Node ID 7dd5797a5ffa2958c0bb9bcb4995e7a9388576b2 # Parent 90ccc385c547860208fc6569fb86dac488cad818 updated diff -r 90ccc385c547 -r 7dd5797a5ffa hws/hw09.pdf Binary file hws/hw09.pdf has changed diff -r 90ccc385c547 -r 7dd5797a5ffa hws/hw09.tex --- a/hws/hw09.tex Fri Nov 28 13:11:17 2014 +0000 +++ b/hws/hw09.tex Fri Nov 28 13:47:32 2014 +0000 @@ -11,65 +11,65 @@ recursion}, when such an optimization can be applied and why it is a benefit? -\item It is true (I confirmed it) that - -\begin{center} if $\varnothing$ does not occur in $r$ -\;\;then\;\;$L(r) \not= \{\}$ -\end{center} - -\noindent -holds, or equivalently - -\begin{center} -$L(r) = \{\}$ \;\;implies\;\; $\varnothing$ occurs in $r$. -\end{center} - -\noindent -You can prove either version by induction on $r$. The best way to -make more formal what is meant by `$\varnothing$ occurs in $r$', you can define -the following function: - -\begin{center} -\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} -$occurs(\varnothing)$ & $\dn$ & $true$\\ -$occurs(\epsilon)$ & $\dn$ & $f\!alse$\\ -$occurs (c)$ & $\dn$ & $f\!alse$\\ -$occurs (r_1 + r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\ -$occurs (r_1 \cdot r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\ -$occurs (r^*)$ & $\dn$ & $occurs(r)$ \\ -\end{tabular} -\end{center} - -\noindent -Now you can prove - -\begin{center} -$L(r) = \{\}$ \;\;implies\;\; $occurs(r)$. -\end{center} - -\noindent -The interesting cases are $r_1 + r_2$ and $r^*$. -The other direction is not true, that is if $occurs(r)$ then $L(r) = \{\}$. A counter example -is $\varnothing + a$: although $\varnothing$ occurs in this regular expression, the corresponding -language is not empty. The obvious extension to include the not-regular expression, $\sim r$, -also leads to an incorrect statement. Suppose we add the clause - -\begin{center} -\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} -$occurs(\sim r)$ & $\dn$ & $occurs(r)$ -\end{tabular} -\end{center} - -\noindent -to the definition above, then it will not be true that - -\begin{center} -$L(r) = \{\}$ \;\;implies\;\; $occurs(r)$. -\end{center} - -\noindent -Assume the alphabet contains just $a$ and $b$, find a counter example to this -property. +% \item It is true (I confirmed it) that +% +% \begin{center} if $\varnothing$ does not occur in $r$ +% \;\;then\;\;$L(r) \not= \{\}$ +% \end{center} +% +% \noindent +% holds, or equivalently +% +% \begin{center} +% $L(r) = \{\}$ \;\;implies\;\; $\varnothing$ occurs in $r$. +% \end{center} +% +% \noindent +% You can prove either version by induction on $r$. The best way to +% make more formal what is meant by `$\varnothing$ occurs in $r$', you can define +% the following function: +% +% \begin{center} +% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} +% $occurs(\varnothing)$ & $\dn$ & $true$\\ +% $occurs(\epsilon)$ & $\dn$ & $f\!alse$\\ +% $occurs (c)$ & $\dn$ & $f\!alse$\\ +% $occurs (r_1 + r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\ +% $occurs (r_1 \cdot r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\ +% $occurs (r^*)$ & $\dn$ & $occurs(r)$ \\ +% \end{tabular} +% \end{center} +% +% \noindent +% Now you can prove +% +% \begin{center} +% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$. +% \end{center} +% +% \noindent +% The interesting cases are $r_1 + r_2$ and $r^*$. +% The other direction is not true, that is if $occurs(r)$ then $L(r) = \{\}$. A counter example +% is $\varnothing + a$: although $\varnothing$ occurs in this regular expression, the corresponding +% language is not empty. The obvious extension to include the not-regular expression, $\sim r$, +% also leads to an incorrect statement. Suppose we add the clause +% +% \begin{center} +% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} +% $occurs(\sim r)$ & $\dn$ & $occurs(r)$ +% \end{tabular} +% \end{center} +% +% \noindent +% to the definition above, then it will not be true that +% +% \begin{center} +% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$. +% \end{center} +% +% \noindent +% Assume the alphabet contains just $a$ and $b$, find a counter example to this +% property. \end{enumerate}