theory Matcher
imports "Main"
begin
section \<open>Regular Expressions\<close>
datatype rexp =
ZERO
| ONE
| CH char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp
section \<open>Sequential Composition of Sets of Strings\<close>
definition
Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
text \<open>Two Simple Properties about Sequential Composition\<close>
lemma seq_empty [simp]:
shows "A ;; {[]} = A"
and "{[]} ;; A = A"
by (simp_all add: Seq_def)
lemma seq_null [simp]:
shows "A ;; {} = {}"
and "{} ;; A = {}"
by (simp_all add: Seq_def)
section \<open>Kleene Star for Sets\<close>
inductive_set
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
for A :: "string set"
where
start[intro]: "[] \<in> A\<star>"
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
text \<open>A Standard Property of Star\<close>
lemma star_cases:
shows "A\<star> = {[]} \<union> A ;; A\<star>"
unfolding Seq_def
by (auto) (metis Star.simps)
lemma star_decomp:
assumes a: "c # x \<in> A\<star>"
shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
using a
by (induct x\<equiv>"c # x" rule: Star.induct)
(auto simp add: append_eq_Cons_conv)
section \<open>Meaning of Regular Expressions\<close>
fun
L :: "rexp \<Rightarrow> string set"
where
"L (ZERO) = {}"
| "L (ONE) = {[]}"
| "L (CH c) = {[c]}"
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
| "L (STAR r) = (L r)\<star>"
section \<open>The Matcher\<close>
fun
nullable :: "rexp \<Rightarrow> bool"
where
"nullable (ZERO) = False"
| "nullable (ONE) = True"
| "nullable (CH c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"
section \<open>Correctness Proof for Nullable\<close>
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
apply(induct r)
(* ZERO case *)
apply(simp only: nullable.simps)
apply(simp only: L.simps)
apply(simp)
(* ONE case *)
apply(simp only: nullable.simps)
apply(simp only: L.simps)
apply(simp)
(* CHAR case *)
apply(simp only: nullable.simps)
apply(simp only: L.simps)
apply(simp)
prefer 2
(* ALT case *)
apply(simp (no_asm) only: nullable.simps)
apply(simp only:)
apply(simp only: L.simps)
apply(simp)
(* SEQ case *)
oops
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
apply(induct r)
apply(simp_all)
(* all easy subgoals are proved except the last 2 *)
(* where the definition of Seq needs to be unfolded. *)
oops
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
apply(induct r)
apply(simp_all add: Seq_def)
(* except the star case every thing is proved *)
(* we need to use the rule for Star.start *)
oops
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
apply(induct r)
apply(simp_all add: Seq_def Star.start)
done
section \<open>Derivative Operation\<close>
fun der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
"der c (ZERO) = ZERO"
| "der c (ONE) = ZERO"
| "der c (CH d) = (if c = d then ONE else ZERO)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) = (if nullable r1 then ALT (SEQ (der c r1) r2) (der c r2)
else SEQ (der c r1) r2)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"
fun
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
"ders [] r = r"
| "ders (c # s) r = ders s (der c r)"
fun
matcher :: "rexp \<Rightarrow> string \<Rightarrow> bool"
where
"matcher r s = nullable (ders s r)"
definition
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
where
"Der c A \<equiv> {s. [c] @ s \<in> A}"
lemma Der_null [simp]:
shows "Der c {} = {}"
unfolding Der_def
by auto
lemma Der_empty [simp]:
shows "Der c {[]} = {}"
unfolding Der_def
by auto
lemma Der_char [simp]:
shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto
lemma Der_union [simp]:
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto
lemma Der_insert_nil [simp]:
shows "Der c (insert [] A) = Der c A"
unfolding Der_def
by auto
lemma Der_seq [simp]:
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
unfolding Der_def Seq_def
by (auto simp add: Cons_eq_append_conv)
lemma Der_star [simp]:
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
by (simp only: star_cases[symmetric])
also have "... = Der c (A ;; A\<star>)"
by (simp only: Der_union Der_empty) (simp)
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
by simp
also have "... = (Der c A) ;; A\<star>"
unfolding Seq_def Der_def
by (auto dest: star_decomp)
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed
lemma der_correctness:
shows "L (der c r) = Der c (L r)"
apply(induct rule: der.induct)
apply(auto simp add: nullable_correctness)
done
lemma matcher_correctness:
shows "matcher r s \<longleftrightarrow> s \<in> L r"
by (induct s arbitrary: r)
(simp_all add: nullable_correctness der_correctness Der_def)
end