--- a/hw04.tex Fri Oct 12 05:45:48 2012 +0100
+++ b/hw04.tex Sun Oct 14 23:41:49 2012 +0100
@@ -11,6 +11,9 @@
\section*{Homework 4}
\begin{enumerate}
+\item Why is every finite set of strings a regular language?
+
+
\item Give an automaton that can recognise the language
$L(a^*\cdot b\cdot b^*\cdot(a\cdot a^*\cdot b\cdot b^*)^*)$.
@@ -18,13 +21,25 @@
string $s$. Given the following \emph{reversing} function on regular
expressions
+\begin{center}
+\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
+$rev(\varnothing)$ & $\dn$ & $\varnothing$\\
+$rev(\epsilon)$ & $\dn$ & $\epsilon$\\
+$rev(c)$ & $\dn$ & $c$\\
+$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
+$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
+$rev(r^*)$ & $\dn$ & $rev(r)^*$\\
+\end{tabular}
+\end{center}
+
+
and the set
\begin{center}
$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
\end{center}
-prove that
+prove whether
\begin{center}
$L(rev(r)) = Rev (L(r))$