hw04.tex
changeset 34 eeff9953a1c1
parent 32 d085fe0c086f
child 42 5529cfb2a81e
equal deleted inserted replaced
33:92b3e287d87e 34:eeff9953a1c1
     9 \begin{document}
     9 \begin{document}
    10 
    10 
    11 \section*{Homework 4}
    11 \section*{Homework 4}
    12 
    12 
    13 \begin{enumerate}
    13 \begin{enumerate}
       
    14 \item Why is every finite set of strings a regular language?
       
    15 
       
    16 
    14 \item Give an automaton that can recognise the language 
    17 \item Give an automaton that can recognise the language 
    15 $L(a^*\cdot b\cdot b^*\cdot(a\cdot a^*\cdot b\cdot b^*)^*)$.
    18 $L(a^*\cdot b\cdot b^*\cdot(a\cdot a^*\cdot b\cdot b^*)^*)$.
    16 
    19 
    17 \item Assume that $s^{-1}$ stands for the operation of reversing a
    20 \item Assume that $s^{-1}$ stands for the operation of reversing a
    18 string $s$. Given the following \emph{reversing} function on regular 
    21 string $s$. Given the following \emph{reversing} function on regular 
    19 expressions
    22 expressions
    20 
    23 
       
    24 \begin{center}
       
    25 \begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
       
    26 $rev(\varnothing)$   & $\dn$ & $\varnothing$\\
       
    27 $rev(\epsilon)$         & $\dn$ & $\epsilon$\\
       
    28 $rev(c)$                      & $\dn$ & $c$\\
       
    29 $rev(r_1 + r_2)$        & $\dn$ & $rev(r_1) + rev(r_2)$\\
       
    30 $rev(r_1 \cdot r_2)$  & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
       
    31 $rev(r^*)$                   & $\dn$ & $rev(r)^*$\\
       
    32 \end{tabular}
       
    33 \end{center}
       
    34 
       
    35 
    21 and the set
    36 and the set
    22 
    37 
    23 \begin{center}
    38 \begin{center}
    24 $Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
    39 $Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
    25 \end{center}
    40 \end{center}
    26 
    41 
    27 prove that
    42 prove whether
    28 
    43 
    29 \begin{center}
    44 \begin{center}
    30 $L(rev(r)) = Rev (L(r))$
    45 $L(rev(r)) = Rev (L(r))$
    31 \end{center}
    46 \end{center}
    32 
    47