changeset 266 | ae039d6ae3f2 |
parent 246 | baf41b05210f |
child 332 | 4755ad4b457b |
--- a/handouts/notation.tex Mon Oct 06 00:46:18 2014 +0100 +++ b/handouts/notation.tex Mon Oct 06 20:55:16 2014 +0100 @@ -132,7 +132,7 @@ \] \noindent The notation $\in$ means \emph{element of}, so $1 -\in \{1, 2, 3\}$ is true and $3 \in \{1, 2, 3\}$ is false. +\in \{1, 2, 3\}$ is true and $4 \in \{1, 2, 3\}$ is false. Sets can potentially have infinitely many elements. For example the set of all natural numbers $\{0, 1, 2, \ldots\}$ is infinite. This set is often also abbreviated as