--- a/hws/hw03.tex Tue Oct 28 06:01:00 2014 +0000
+++ b/hws/hw03.tex Tue Oct 28 12:24:11 2014 +0000
@@ -59,7 +59,10 @@
a transition for every letter from the alphabet.)
\begin{center}
- \begin{tikzpicture}[scale=2, line width=0.7mm]
+ \begin{tikzpicture}[>=stealth',very thick,auto,
+ every state/.style={minimum size=0pt,
+ inner sep=2pt,draw=blue!50,very thick,
+ fill=blue!20},scale=2]
\node[state, initial] (q0) at ( 0,1) {$q_0$};
\node[state, accepting] (q1) at ( 1,1) {$q_1$};
\path[->] (q0) edge node[above] {$a$} (q1)
@@ -92,7 +95,10 @@
recognises the same language:
\begin{center}
- \begin{tikzpicture}[scale=3, line width=0.7mm]
+ \begin{tikzpicture}[>=stealth',very thick,auto,
+ every state/.style={minimum size=0pt,
+ inner sep=2pt,draw=blue!50,very thick,
+ fill=blue!20},scale=2]
\node[state, initial] (q0) at ( 0,1) {$q_0$};
\node[state] (q1) at ( 1,1) {$q_1$};
\node[state, accepting] (q2) at ( 2,1) {$q_2$};
@@ -108,7 +114,10 @@
case states can be merged, state clearly which states can be merged.
\begin{center}
- \begin{tikzpicture}[scale=2, line width=0.7mm]
+ \begin{tikzpicture}[>=stealth',very thick,auto,
+ every state/.style={minimum size=0pt,
+ inner sep=2pt,draw=blue!50,very thick,
+ fill=blue!20},scale=2]
\node[state, initial] (q0) at ( 0,1) {$q_0$};
\node[state] (q1) at ( 1,1) {$q_1$};
\node[state, accepting] (q4) at ( 2,1) {$q_4$};
@@ -129,7 +138,10 @@
\item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
\begin{center}
- \begin{tikzpicture}[scale=2, line width=0.5mm]
+ \begin{tikzpicture}[scale=2,>=stealth',very thick,auto,
+ every state/.style={minimum size=0pt,
+ inner sep=2pt,draw=blue!50,very thick,
+ fill=blue!20}]
\node[state, initial, accepting] (q0) at ( 0,1) {$q_0$};
\node[state, accepting] (q1) at ( 1,1) {$q_1$};
\node[state] (q2) at ( 2,1) {$q_2$};