hws/hw03.tex
changeset 292 7ed2a25dd115
parent 271 b9b54574ee41
child 294 c29853b672fb
equal deleted inserted replaced
291:201c2c6d8696 292:7ed2a25dd115
    57   complement language.  (Hint: Recall that for the algorithm from the
    57   complement language.  (Hint: Recall that for the algorithm from the
    58   lectures, the automaton needs to be in completed form, that is have
    58   lectures, the automaton needs to be in completed form, that is have
    59   a transition for every letter from the alphabet.)
    59   a transition for every letter from the alphabet.)
    60 
    60 
    61   \begin{center}
    61   \begin{center}
    62     \begin{tikzpicture}[scale=2, line width=0.7mm]
    62     \begin{tikzpicture}[>=stealth',very thick,auto,
       
    63                         every state/.style={minimum size=0pt,
       
    64                         inner sep=2pt,draw=blue!50,very thick,
       
    65                         fill=blue!20},scale=2]
    63       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
    66       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
    64       \node[state, accepting]  (q1) at ( 1,1) {$q_1$};
    67       \node[state, accepting]  (q1) at ( 1,1) {$q_1$};
    65       \path[->] (q0) edge node[above] {$a$} (q1)
    68       \path[->] (q0) edge node[above] {$a$} (q1)
    66                 (q1) edge [loop right] node {$b$} ();
    69                 (q1) edge [loop right] node {$b$} ();
    67     \end{tikzpicture}
    70     \end{tikzpicture}
    90 \item Given the following non-deterministic finite automaton over the
    93 \item Given the following non-deterministic finite automaton over the
    91   alphabet $\{a, b\}$, find a deterministic finite automaton that
    94   alphabet $\{a, b\}$, find a deterministic finite automaton that
    92   recognises the same language:
    95   recognises the same language:
    93 
    96 
    94   \begin{center}
    97   \begin{center}
    95     \begin{tikzpicture}[scale=3, line width=0.7mm]
    98     \begin{tikzpicture}[>=stealth',very thick,auto,
       
    99                         every state/.style={minimum size=0pt,
       
   100                         inner sep=2pt,draw=blue!50,very thick,
       
   101                         fill=blue!20},scale=2]
    96       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
   102       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
    97       \node[state]                    (q1) at ( 1,1) {$q_1$};
   103       \node[state]                    (q1) at ( 1,1) {$q_1$};
    98       \node[state, accepting] (q2) at ( 2,1) {$q_2$};
   104       \node[state, accepting] (q2) at ( 2,1) {$q_2$};
    99       \path[->] (q0) edge node[above] {$a$} (q1)
   105       \path[->] (q0) edge node[above] {$a$} (q1)
   100                 (q0) edge [loop above] node[above] {$b$} ()
   106                 (q0) edge [loop above] node[above] {$b$} ()
   106 \item Given the following deterministic finite automaton over the
   112 \item Given the following deterministic finite automaton over the
   107   alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
   113   alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
   108   case states can be merged, state clearly which states can be merged.
   114   case states can be merged, state clearly which states can be merged.
   109 
   115 
   110   \begin{center}
   116   \begin{center}
   111     \begin{tikzpicture}[scale=2, line width=0.7mm]
   117     \begin{tikzpicture}[>=stealth',very thick,auto,
       
   118                         every state/.style={minimum size=0pt,
       
   119                         inner sep=2pt,draw=blue!50,very thick,
       
   120                         fill=blue!20},scale=2]
   112       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
   121       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
   113       \node[state]                    (q1) at ( 1,1) {$q_1$};
   122       \node[state]                    (q1) at ( 1,1) {$q_1$};
   114       \node[state, accepting] (q4) at ( 2,1) {$q_4$};
   123       \node[state, accepting] (q4) at ( 2,1) {$q_4$};
   115       \node[state]                    (q2) at (0.5,0) {$q_2$};
   124       \node[state]                    (q2) at (0.5,0) {$q_2$};
   116       \node[state]                    (q3) at (1.5,0) {$q_3$};
   125       \node[state]                    (q3) at (1.5,0) {$q_3$};
   127   \end{center}
   136   \end{center}
   128 
   137 
   129 \item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
   138 \item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
   130 
   139 
   131   \begin{center}
   140   \begin{center}
   132     \begin{tikzpicture}[scale=2, line width=0.5mm]
   141     \begin{tikzpicture}[scale=2,>=stealth',very thick,auto,
       
   142                         every state/.style={minimum size=0pt,
       
   143                         inner sep=2pt,draw=blue!50,very thick,
       
   144                         fill=blue!20}]
   133       \node[state, initial, accepting]        (q0) at ( 0,1) {$q_0$};
   145       \node[state, initial, accepting]        (q0) at ( 0,1) {$q_0$};
   134       \node[state, accepting]                    (q1) at ( 1,1) {$q_1$};
   146       \node[state, accepting]                    (q1) at ( 1,1) {$q_1$};
   135       \node[state] (q2) at ( 2,1) {$q_2$};
   147       \node[state] (q2) at ( 2,1) {$q_2$};
   136       \path[->] (q0) edge[bend left] node[above] {$a$} (q1)
   148       \path[->] (q0) edge[bend left] node[above] {$a$} (q1)
   137                 (q1) edge[bend left] node[above] {$b$} (q0)
   149                 (q1) edge[bend left] node[above] {$b$} (q0)