--- a/hws/hw03.tex Thu Oct 05 14:36:54 2023 +0100
+++ b/hws/hw03.tex Fri Oct 13 15:07:37 2023 +0100
@@ -69,7 +69,11 @@
What is the language recognised by this automaton?
-
+ \solution{
+ All strings consisting of 0 or more a's then 1 or more b's,
+ which is equivalent to the language of the regular
+ expression $a^* \cdot b \cdot b^*$.
+ }
\item Give a non-deterministic finite automaton that can
recognise the language $L(a\cdot (a + b)^* \cdot c)$.
@@ -109,6 +113,8 @@
}
+
+
\item Given the following deterministic finite automaton over
the alphabet $\{a, b\}$, find an automaton that
recognises the complement language. (Hint: Recall that
@@ -178,6 +184,12 @@
\end{tikzpicture}
\end{center}
+ \solution{
+ The DFA has three states Q0,Q1,Q2 with Q0 starting state and Q2 accepting.
+ The transitions are (Q0,a)-> Q1 (Q0,b)->Q0 (Q1,a)->Q2 (Q1,b)->Q0
+ (Q2,a)->Q2 (Q2,b)->Q0.
+ }
+
\item %%\textbf{(Deleted for 2017, 2018, 2019)}
Given the following deterministic finite automaton over the
alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
@@ -232,6 +244,10 @@
Arden's lemma which states that an equation of the form $q = q\cdot r + s$
has the unique solution $q = s \cdot r^*$.)
+ \solution{
+ $(b + ab + aa(a^*)b)^* \cdot (1 + a)$
+ }
+
\item If a non-deterministic finite automaton (NFA) has
$n$ states. How many states does a deterministic
automaton (DFA) that can recognise the same language