diff -r 46eee459a999 -r 66adcae6c762 hws/hw03.tex --- a/hws/hw03.tex Thu Oct 05 14:36:54 2023 +0100 +++ b/hws/hw03.tex Fri Oct 13 15:07:37 2023 +0100 @@ -69,7 +69,11 @@ What is the language recognised by this automaton? - + \solution{ + All strings consisting of 0 or more a's then 1 or more b's, + which is equivalent to the language of the regular + expression $a^* \cdot b \cdot b^*$. + } \item Give a non-deterministic finite automaton that can recognise the language $L(a\cdot (a + b)^* \cdot c)$. @@ -109,6 +113,8 @@ } + + \item Given the following deterministic finite automaton over the alphabet $\{a, b\}$, find an automaton that recognises the complement language. (Hint: Recall that @@ -178,6 +184,12 @@ \end{tikzpicture} \end{center} + \solution{ + The DFA has three states Q0,Q1,Q2 with Q0 starting state and Q2 accepting. + The transitions are (Q0,a)-> Q1 (Q0,b)->Q0 (Q1,a)->Q2 (Q1,b)->Q0 + (Q2,a)->Q2 (Q2,b)->Q0. + } + \item %%\textbf{(Deleted for 2017, 2018, 2019)} Given the following deterministic finite automaton over the alphabet $\{0, 1\}$, find the corresponding minimal automaton. In @@ -232,6 +244,10 @@ Arden's lemma which states that an equation of the form $q = q\cdot r + s$ has the unique solution $q = s \cdot r^*$.) + \solution{ + $(b + ab + aa(a^*)b)^* \cdot (1 + a)$ + } + \item If a non-deterministic finite automaton (NFA) has $n$ states. How many states does a deterministic automaton (DFA) that can recognise the same language