hws/hw04.tex
changeset 726 fba480bbc9f7
parent 577 7a437f1f689d
child 768 34f77b976b88
equal deleted inserted replaced
725:f345e89895f5 726:fba480bbc9f7
     7 \section*{Homework 4}
     7 \section*{Homework 4}
     8 
     8 
     9 \HEADER
     9 \HEADER
    10 
    10 
    11 \begin{enumerate}
    11 \begin{enumerate}
       
    12 
       
    13 \item Given the regular expressions
       
    14 
       
    15 \begin{center}
       
    16 \begin{tabular}{ll}    
       
    17   1) & $(ab + a)\cdot (\ONE + b)$\\
       
    18   2) & $(aa + a)^*$\\
       
    19 \end{tabular}
       
    20 \end{center}
       
    21 
       
    22 there are several values for how these regular expressions can
       
    23 recognise the strings (for 1) $ab$ and (for 2) $aaa$. Give in each case
       
    24 \emph{all} the values and indicate which one is the POSIX value.
       
    25   
    12 
    26 
    13 \item If a regular expression $r$ does not contain any occurrence of $\ZERO$,  
    27 \item If a regular expression $r$ does not contain any occurrence of $\ZERO$,  
    14 is it possible for $L(r)$ to be empty? Explain why, or give a proof.
    28 is it possible for $L(r)$ to be empty? Explain why, or give a proof.
    15 
    29 
    16 \item Define the tokens and regular expressions for a language
    30 \item Define the tokens and regular expressions for a language