diff -r f345e89895f5 -r fba480bbc9f7 hws/hw04.tex --- a/hws/hw04.tex Mon Jun 29 21:05:34 2020 +0100 +++ b/hws/hw04.tex Mon Jun 29 21:13:49 2020 +0100 @@ -10,6 +10,20 @@ \begin{enumerate} +\item Given the regular expressions + +\begin{center} +\begin{tabular}{ll} + 1) & $(ab + a)\cdot (\ONE + b)$\\ + 2) & $(aa + a)^*$\\ +\end{tabular} +\end{center} + +there are several values for how these regular expressions can +recognise the strings (for 1) $ab$ and (for 2) $aaa$. Give in each case +\emph{all} the values and indicate which one is the POSIX value. + + \item If a regular expression $r$ does not contain any occurrence of $\ZERO$, is it possible for $L(r)$ to be empty? Explain why, or give a proof.