hws/hw03.tex
changeset 271 b9b54574ee41
parent 267 a1544b804d1e
child 292 7ed2a25dd115
equal deleted inserted replaced
270:4dbeaf43031d 271:b9b54574ee41
    65       \path[->] (q0) edge node[above] {$a$} (q1)
    65       \path[->] (q0) edge node[above] {$a$} (q1)
    66                 (q1) edge [loop right] node {$b$} ();
    66                 (q1) edge [loop right] node {$b$} ();
    67     \end{tikzpicture}
    67     \end{tikzpicture}
    68   \end{center}
    68   \end{center}
    69 
    69 
    70 \item Given the following deterministic finite automaton over the
       
    71   alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
       
    72   case states can be merged, state clearly which states can be merged.
       
    73 
    70 
    74   \begin{center}
       
    75     \begin{tikzpicture}[scale=2, line width=0.7mm]
       
    76       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
       
    77       \node[state]                    (q1) at ( 1,1) {$q_1$};
       
    78       \node[state, accepting] (q4) at ( 2,1) {$q_4$};
       
    79       \node[state]                    (q2) at (0.5,0) {$q_2$};
       
    80       \node[state]                    (q3) at (1.5,0) {$q_3$};
       
    81       \path[->] (q0) edge node[above] {$0$} (q1)
       
    82                 (q0) edge node[right] {$1$} (q2)
       
    83                 (q1) edge node[above] {$0$} (q4)
       
    84                 (q1) edge node[right] {$1$} (q2)
       
    85                 (q2) edge node[above] {$0$} (q3)
       
    86                 (q2) edge [loop below] node {$1$} ()
       
    87                 (q3) edge node[left] {$0$} (q4)
       
    88                 (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
       
    89                 (q4) edge [loop right] node {$0, 1$} ();
       
    90     \end{tikzpicture}
       
    91   \end{center}
       
    92 
    71 
    93 %\item Given the following deterministic finite automaton
    72 %\item Given the following deterministic finite automaton
    94 %
    73 %
    95 %\begin{center}
    74 %\begin{center}
    96 %\begin{tikzpicture}[scale=3, line width=0.7mm]
    75 %\begin{tikzpicture}[scale=3, line width=0.7mm]
   122                 (q0) edge [loop below] node[below] {$a$} ()
   101                 (q0) edge [loop below] node[below] {$a$} ()
   123                 (q1) edge node[above] {$a$} (q2);
   102                 (q1) edge node[above] {$a$} (q2);
   124     \end{tikzpicture}
   103     \end{tikzpicture}
   125   \end{center}
   104   \end{center}
   126 
   105 
       
   106 \item Given the following deterministic finite automaton over the
       
   107   alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
       
   108   case states can be merged, state clearly which states can be merged.
       
   109 
       
   110   \begin{center}
       
   111     \begin{tikzpicture}[scale=2, line width=0.7mm]
       
   112       \node[state, initial]        (q0) at ( 0,1) {$q_0$};
       
   113       \node[state]                    (q1) at ( 1,1) {$q_1$};
       
   114       \node[state, accepting] (q4) at ( 2,1) {$q_4$};
       
   115       \node[state]                    (q2) at (0.5,0) {$q_2$};
       
   116       \node[state]                    (q3) at (1.5,0) {$q_3$};
       
   117       \path[->] (q0) edge node[above] {$0$} (q1)
       
   118                 (q0) edge node[right] {$1$} (q2)
       
   119                 (q1) edge node[above] {$0$} (q4)
       
   120                 (q1) edge node[right] {$1$} (q2)
       
   121                 (q2) edge node[above] {$0$} (q3)
       
   122                 (q2) edge [loop below] node {$1$} ()
       
   123                 (q3) edge node[left] {$0$} (q4)
       
   124                 (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
       
   125                 (q4) edge [loop right] node {$0, 1$} ();
       
   126     \end{tikzpicture}
       
   127   \end{center}
       
   128 
   127 \item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
   129 \item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
   128 
   130 
   129   \begin{center}
   131   \begin{center}
   130     \begin{tikzpicture}[scale=2, line width=0.5mm]
   132     \begin{tikzpicture}[scale=2, line width=0.5mm]
   131       \node[state, initial, accepting]        (q0) at ( 0,1) {$q_0$};
   133       \node[state, initial, accepting]        (q0) at ( 0,1) {$q_0$};