slides/slides03.tex
changeset 784 7dac4492b0e6
parent 783 06cbaaad3ba8
child 847 da2320360f12
equal deleted inserted replaced
783:06cbaaad3ba8 784:7dac4492b0e6
  1490 %
  1490 %
  1491 %\end{frame}
  1491 %\end{frame}
  1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1493 
  1493 
  1494 
  1494 
  1495 
       
  1496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
  1497 \begin{frame}[c]
       
  1498 
       
  1499 \begin{center}
       
  1500 \begin{tikzpicture}[scale=2,>=stealth',very thick,
       
  1501                              every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},]
       
  1502   \only<-7>{\node[state, initial] (q0) at ( 0,1) {$\mbox{Q}_0$};}
       
  1503   \only<8->{\node[state, initial,accepting] (q0) at ( 0,1) {$\mbox{Q}_0$};}                           
       
  1504   \only<-7>{\node[state] (q1) at ( 1,1) {$\mbox{Q}_1$};}
       
  1505   \only<8->{\node[state,accepting] (q1) at ( 1,1) {$\mbox{Q}_1$};}
       
  1506   \node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};
       
  1507   \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1)
       
  1508                   (q1) edge[bend left] node[above] {\alert{$b$}} (q0)
       
  1509                   (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0)
       
  1510                   (q1) edge node[above] {\alert{$a$}} (q2)
       
  1511                   (q2) edge [loop right] node {\alert{$a$}} ()
       
  1512                   (q0) edge [loop below] node {\alert{$b$}} ()
       
  1513             ;
       
  1514 \end{tikzpicture}
       
  1515 \end{center}\bigskip
       
  1516 
       
  1517 \begin{center}
       
  1518 \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
       
  1519 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,b + \mbox{Q}_1\,b +  \mbox{Q}_2\,b$}\\
       
  1520 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a$}\\
       
  1521 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_1\,a + \mbox{Q}_2\,a$}\\
       
  1522 \end{tabular}
       
  1523 \end{center}
       
  1524 
       
  1525 
       
  1526 Arden's Lemma:
       
  1527 \begin{center}
       
  1528 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$}
       
  1529 \end{center}
       
  1530 
       
  1531 \only<2-6>{\small
       
  1532 \begin{textblock}{6}(1,0.8)
       
  1533 \begin{bubble}[6.7cm]
       
  1534 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1535 \multicolumn{3}{@{}l}{substitute \bl{$\mbox{Q}_1$} into \bl{$\mbox{Q}_0$} \& \bl{$\mbox{Q}_2$}:}\\    
       
  1536 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,b + \mbox{Q}_0\,a\,b +  \mbox{Q}_2\,b$}\\
       
  1537 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$}
       
  1538 \end{tabular}
       
  1539 \end{bubble}
       
  1540 \end{textblock}}
       
  1541 
       
  1542 \only<3-6>{\small
       
  1543 \begin{textblock}{6}(2,4.15)
       
  1544 \begin{bubble}[6.7cm]
       
  1545 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1546 \multicolumn{3}{@{}l}{simplifying \bl{$\mbox{Q}_0$}:}\\    
       
  1547 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b$}\\
       
  1548 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$}
       
  1549 \end{tabular}
       
  1550 \end{bubble}
       
  1551 \end{textblock}}
       
  1552 
       
  1553 \only<4-6>{\small
       
  1554 \begin{textblock}{6}(3,7.55)
       
  1555 \begin{bubble}[6.7cm]
       
  1556 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1557   \multicolumn{3}{@{}l}{Arden for \bl{$\mbox{Q}_2$}:}\\    
       
  1558 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b$}\\
       
  1559 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a\,(a^*)$}
       
  1560 \end{tabular}
       
  1561 \end{bubble}
       
  1562 \end{textblock}}
       
  1563 
       
  1564 \only<5-6>{\small
       
  1565 \begin{textblock}{6}(4,10.9)
       
  1566 \begin{bubble}[7.5cm]
       
  1567 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1568   \multicolumn{3}{@{}l}{Substitute \bl{$\mbox{Q}_2$} and simplify:}\\    
       
  1569 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,(b + a\,b + a\,a\,(a^*)\,b)$}\\
       
  1570 \end{tabular}
       
  1571 \end{bubble}
       
  1572 \end{textblock}}
       
  1573 
       
  1574 \only<6>{\small
       
  1575 \begin{textblock}{6}(5,13.4)
       
  1576 \begin{bubble}[7.5cm]
       
  1577 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1578   \multicolumn{3}{@{}l}{Arden again for \bl{$\mbox{Q}_0$}:}\\    
       
  1579 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\
       
  1580 \end{tabular}
       
  1581 \end{bubble}
       
  1582 \end{textblock}}
       
  1583 
       
  1584 
       
  1585 \only<7->{\small
       
  1586 \begin{textblock}{6}(6,11.5)
       
  1587 \begin{bubble}[6.7cm]
       
  1588 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1589 \multicolumn{3}{@{}l}{Finally:}\\    
       
  1590 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\
       
  1591 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a$}\\
       
  1592 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a\,a\,(a^*)$}\\
       
  1593 \end{tabular}
       
  1594 \end{bubble}
       
  1595 \end{textblock}}
       
  1596 
       
  1597 \end{frame}
       
  1598 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
  1599 
       
  1600 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1495 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1601 \begin{frame}[c]
  1496 \begin{frame}[c]
  1602 \frametitle{Regexps and Automata}
  1497 \frametitle{Regexps and Automata}
  1603 
  1498 
  1604 \begin{center}
  1499 \begin{center}