slides/slides03.tex
changeset 783 06cbaaad3ba8
parent 782 a26a20acd1c2
child 784 7dac4492b0e6
equal deleted inserted replaced
782:a26a20acd1c2 783:06cbaaad3ba8
  1267 \begin{frame}[c]
  1267 \begin{frame}[c]
  1268 
  1268 
  1269 \begin{center}
  1269 \begin{center}
  1270 \begin{tikzpicture}[scale=2,>=stealth',very thick,
  1270 \begin{tikzpicture}[scale=2,>=stealth',very thick,
  1271                              every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},]
  1271                              every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},]
  1272   \only<1->{\node[state, initial]        (q0) at ( 0,1) {$\mbox{Q}_0$};}
  1272   \only<1->{\node[state, initial,accepting]        (q0) at ( 0,1) {$\mbox{Q}_0$};}
  1273   \only<1->{\node[state]                    (q1) at ( 1,1) {$\mbox{Q}_1$};}
  1273   \only<1->{\node[state,accepting]                    (q1) at ( 1,1) {$\mbox{Q}_1$};}
  1274   \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};}
  1274   \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};}
  1275   \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1)
  1275   \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1)
  1276                   (q1) edge[bend left] node[above] {\alert{$b$}} (q0)
  1276                   (q1) edge[bend left] node[above] {\alert{$b$}} (q0)
  1277                   (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0)
  1277                   (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0)
  1278                   (q1) edge node[above] {\alert{$a$}} (q2)
  1278                   (q1) edge node[above] {\alert{$a$}} (q2)
  1325 
  1325 
  1326 \end{tabular}
  1326 \end{tabular}
  1327 \end{center}
  1327 \end{center}
  1328 }
  1328 }
  1329 
  1329 
  1330 \onslide<3->{
  1330 
       
  1331 \only<3-9>{\small
       
  1332 \begin{textblock}{6}(1,0.8)
       
  1333 \begin{bubble}[6.7cm]
       
  1334 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1335 \multicolumn{3}{@{}l}{substitute \bl{$\mbox{Q}_1$} into \bl{$\mbox{Q}_0$} \& \bl{$\mbox{Q}_2$}:}\\    
       
  1336 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,b + \mbox{Q}_0\,a\,b +  \mbox{Q}_2\,b + \ONE$}\\
       
  1337 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$}
       
  1338 \end{tabular}
       
  1339 \end{bubble}
       
  1340 \end{textblock}}
       
  1341 
       
  1342 \only<4-9>{\small
       
  1343 \begin{textblock}{6}(2,4.15)
       
  1344 \begin{bubble}[6.7cm]
       
  1345 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1346 \multicolumn{3}{@{}l}{simplifying \bl{$\mbox{Q}_0$}:}\\    
       
  1347 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\
       
  1348 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$}
       
  1349 \end{tabular}
       
  1350 \end{bubble}
       
  1351 \end{textblock}}
       
  1352 
       
  1353 \only<6-9>{\small
       
  1354 \begin{textblock}{6}(3,7.55)
       
  1355 \begin{bubble}[6.7cm]
       
  1356 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1357   \multicolumn{3}{@{}l}{Arden for \bl{$\mbox{Q}_2$}:}\\    
       
  1358 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\
       
  1359 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a\,(a^*)$}
       
  1360 \end{tabular}
       
  1361 \end{bubble}
       
  1362 \end{textblock}}
       
  1363 
       
  1364 \only<7-9>{\small
       
  1365 \begin{textblock}{6}(4,10.9)
       
  1366 \begin{bubble}[7.5cm]
       
  1367 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1368   \multicolumn{3}{@{}l}{Substitute \bl{$\mbox{Q}_2$} and simplify:}\\    
       
  1369 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b + a\,a\,(a^*)\,b) + \ONE$}\\
       
  1370 \end{tabular}
       
  1371 \end{bubble}
       
  1372 \end{textblock}}
       
  1373 
       
  1374 \only<8-9>{\small
       
  1375 \begin{textblock}{6}(5,13.4)
       
  1376 \begin{bubble}[7.5cm]
       
  1377 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1378   \multicolumn{3}{@{}l}{Arden again for \bl{$\mbox{Q}_0$}:}\\    
       
  1379 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\
       
  1380 \end{tabular}
       
  1381 \end{bubble}
       
  1382 \end{textblock}}
       
  1383 
       
  1384 
       
  1385 \only<9-10>{\small
       
  1386 \begin{textblock}{6}(6,11.5)
       
  1387 \begin{bubble}[6.7cm]
       
  1388 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
  1389 \multicolumn{3}{@{}l}{Finally:}\\    
       
  1390 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\
       
  1391 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a$}\\
       
  1392 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a\,a\,(a^*)$}\\
       
  1393 \end{tabular}
       
  1394 \end{bubble}
       
  1395 \end{textblock}}
       
  1396 
       
  1397 
       
  1398 
       
  1399 
       
  1400 
       
  1401 \only<5-6>{
       
  1402 \begin{textblock}{6}(0.7,11.9)
       
  1403 \begin{bubble}[6.7cm]
  1331 Arden's Lemma:
  1404 Arden's Lemma:
  1332 \begin{center}
  1405 \begin{center}
  1333 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$}
  1406 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$}
  1334 \end{center}
  1407 \end{center}
  1335 }
  1408 \end{bubble}
       
  1409 \end{textblock}}
       
  1410 
       
  1411 \only<8>{
       
  1412 \begin{textblock}{6}(1.1,7.8)
       
  1413 \begin{bubble}[6.7cm]
       
  1414 Arden's Lemma:
       
  1415 \begin{center}
       
  1416 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$}
       
  1417 \end{center}
       
  1418 \end{bubble}
       
  1419 \end{textblock}}
  1336 
  1420 
  1337 \end{frame}
  1421 \end{frame}
  1338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1422 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1339 
  1423 
  1340 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1424 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1374 \end{frame}
  1458 \end{frame}
  1375 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1459 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1376 
  1460 
  1377 
  1461 
  1378 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1462 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1379 \begin{frame}[c]
  1463 %\begin{frame}[c]
  1380 
  1464 %
  1381 Given the function 
  1465 %Given the function 
  1382 
  1466 %
  1383 \begin{center}
  1467 %\begin{center}
  1384 \bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
  1468 %\bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
  1385 $rev(\ZERO)$   & $\dn$ & $\ZERO$\\
  1469 %$rev(\ZERO)$   & $\dn$ & $\ZERO$\\
  1386 $rev(\ONE)$         & $\dn$ & $\ONE$\\
  1470 %$rev(\ONE)$         & $\dn$ & $\ONE$\\
  1387 $rev(c)$                      & $\dn$ & $c$\\
  1471 %$rev(c)$                      & $\dn$ & $c$\\
  1388 $rev(r_1 + r_2)$        & $\dn$ & $rev(r_1) + rev(r_2)$\\
  1472 %$rev(r_1 + r_2)$        & $\dn$ & $rev(r_1) + rev(r_2)$\\
  1389 $rev(r_1 \cdot r_2)$  & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
  1473 %$rev(r_1 \cdot r_2)$  & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
  1390 $rev(r^*)$                   & $\dn$ & $rev(r)^*$\\
  1474 %$rev(r^*)$                   & $\dn$ & $rev(r)^*$\\
  1391 \end{tabular}}
  1475 %\end{tabular}}
  1392 \end{center}
  1476 %\end{center}
  1393 
  1477 %
  1394 
  1478 %
  1395 and the set
  1479 %and the set
  1396 
  1480 %
  1397 \begin{center}
  1481 %\begin{center}
  1398 \bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$}
  1482 %\bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$}
  1399 \end{center}
  1483 %\end{center}
  1400 
  1484 %
  1401 prove whether
  1485 %prove whether
  1402 
  1486 %
  1403 \begin{center}
  1487 %\begin{center}
  1404 \bl{$L(rev(r)) = Rev (L(r))$}
  1488 %\bl{$L(rev(r)) = Rev (L(r))$}
  1405 \end{center}
  1489 %\end{center}
  1406 
  1490 %
  1407 \end{frame}
  1491 %\end{frame}
  1408 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  1409 
  1493 
  1410 
  1494 
  1411 
  1495 
  1412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%