1267 \begin{frame}[c] |
1267 \begin{frame}[c] |
1268 |
1268 |
1269 \begin{center} |
1269 \begin{center} |
1270 \begin{tikzpicture}[scale=2,>=stealth',very thick, |
1270 \begin{tikzpicture}[scale=2,>=stealth',very thick, |
1271 every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},] |
1271 every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},] |
1272 \only<1->{\node[state, initial] (q0) at ( 0,1) {$\mbox{Q}_0$};} |
1272 \only<1->{\node[state, initial,accepting] (q0) at ( 0,1) {$\mbox{Q}_0$};} |
1273 \only<1->{\node[state] (q1) at ( 1,1) {$\mbox{Q}_1$};} |
1273 \only<1->{\node[state,accepting] (q1) at ( 1,1) {$\mbox{Q}_1$};} |
1274 \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};} |
1274 \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};} |
1275 \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1) |
1275 \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1) |
1276 (q1) edge[bend left] node[above] {\alert{$b$}} (q0) |
1276 (q1) edge[bend left] node[above] {\alert{$b$}} (q0) |
1277 (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0) |
1277 (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0) |
1278 (q1) edge node[above] {\alert{$a$}} (q2) |
1278 (q1) edge node[above] {\alert{$a$}} (q2) |
1325 |
1325 |
1326 \end{tabular} |
1326 \end{tabular} |
1327 \end{center} |
1327 \end{center} |
1328 } |
1328 } |
1329 |
1329 |
1330 \onslide<3->{ |
1330 |
|
1331 \only<3-9>{\small |
|
1332 \begin{textblock}{6}(1,0.8) |
|
1333 \begin{bubble}[6.7cm] |
|
1334 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1335 \multicolumn{3}{@{}l}{substitute \bl{$\mbox{Q}_1$} into \bl{$\mbox{Q}_0$} \& \bl{$\mbox{Q}_2$}:}\\ |
|
1336 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,b + \mbox{Q}_0\,a\,b + \mbox{Q}_2\,b + \ONE$}\\ |
|
1337 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} |
|
1338 \end{tabular} |
|
1339 \end{bubble} |
|
1340 \end{textblock}} |
|
1341 |
|
1342 \only<4-9>{\small |
|
1343 \begin{textblock}{6}(2,4.15) |
|
1344 \begin{bubble}[6.7cm] |
|
1345 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1346 \multicolumn{3}{@{}l}{simplifying \bl{$\mbox{Q}_0$}:}\\ |
|
1347 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\ |
|
1348 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} |
|
1349 \end{tabular} |
|
1350 \end{bubble} |
|
1351 \end{textblock}} |
|
1352 |
|
1353 \only<6-9>{\small |
|
1354 \begin{textblock}{6}(3,7.55) |
|
1355 \begin{bubble}[6.7cm] |
|
1356 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1357 \multicolumn{3}{@{}l}{Arden for \bl{$\mbox{Q}_2$}:}\\ |
|
1358 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\ |
|
1359 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a\,(a^*)$} |
|
1360 \end{tabular} |
|
1361 \end{bubble} |
|
1362 \end{textblock}} |
|
1363 |
|
1364 \only<7-9>{\small |
|
1365 \begin{textblock}{6}(4,10.9) |
|
1366 \begin{bubble}[7.5cm] |
|
1367 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1368 \multicolumn{3}{@{}l}{Substitute \bl{$\mbox{Q}_2$} and simplify:}\\ |
|
1369 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b + a\,a\,(a^*)\,b) + \ONE$}\\ |
|
1370 \end{tabular} |
|
1371 \end{bubble} |
|
1372 \end{textblock}} |
|
1373 |
|
1374 \only<8-9>{\small |
|
1375 \begin{textblock}{6}(5,13.4) |
|
1376 \begin{bubble}[7.5cm] |
|
1377 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1378 \multicolumn{3}{@{}l}{Arden again for \bl{$\mbox{Q}_0$}:}\\ |
|
1379 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ |
|
1380 \end{tabular} |
|
1381 \end{bubble} |
|
1382 \end{textblock}} |
|
1383 |
|
1384 |
|
1385 \only<9-10>{\small |
|
1386 \begin{textblock}{6}(6,11.5) |
|
1387 \begin{bubble}[6.7cm] |
|
1388 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1389 \multicolumn{3}{@{}l}{Finally:}\\ |
|
1390 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ |
|
1391 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a$}\\ |
|
1392 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a\,a\,(a^*)$}\\ |
|
1393 \end{tabular} |
|
1394 \end{bubble} |
|
1395 \end{textblock}} |
|
1396 |
|
1397 |
|
1398 |
|
1399 |
|
1400 |
|
1401 \only<5-6>{ |
|
1402 \begin{textblock}{6}(0.7,11.9) |
|
1403 \begin{bubble}[6.7cm] |
1331 Arden's Lemma: |
1404 Arden's Lemma: |
1332 \begin{center} |
1405 \begin{center} |
1333 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} |
1406 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} |
1334 \end{center} |
1407 \end{center} |
1335 } |
1408 \end{bubble} |
|
1409 \end{textblock}} |
|
1410 |
|
1411 \only<8>{ |
|
1412 \begin{textblock}{6}(1.1,7.8) |
|
1413 \begin{bubble}[6.7cm] |
|
1414 Arden's Lemma: |
|
1415 \begin{center} |
|
1416 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} |
|
1417 \end{center} |
|
1418 \end{bubble} |
|
1419 \end{textblock}} |
1336 |
1420 |
1337 \end{frame} |
1421 \end{frame} |
1338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1422 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1339 |
1423 |
1340 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1424 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1374 \end{frame} |
1458 \end{frame} |
1375 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1459 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1376 |
1460 |
1377 |
1461 |
1378 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1462 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1379 \begin{frame}[c] |
1463 %\begin{frame}[c] |
1380 |
1464 % |
1381 Given the function |
1465 %Given the function |
1382 |
1466 % |
1383 \begin{center} |
1467 %\begin{center} |
1384 \bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} |
1468 %\bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} |
1385 $rev(\ZERO)$ & $\dn$ & $\ZERO$\\ |
1469 %$rev(\ZERO)$ & $\dn$ & $\ZERO$\\ |
1386 $rev(\ONE)$ & $\dn$ & $\ONE$\\ |
1470 %$rev(\ONE)$ & $\dn$ & $\ONE$\\ |
1387 $rev(c)$ & $\dn$ & $c$\\ |
1471 %$rev(c)$ & $\dn$ & $c$\\ |
1388 $rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\ |
1472 %$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\ |
1389 $rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\ |
1473 %$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\ |
1390 $rev(r^*)$ & $\dn$ & $rev(r)^*$\\ |
1474 %$rev(r^*)$ & $\dn$ & $rev(r)^*$\\ |
1391 \end{tabular}} |
1475 %\end{tabular}} |
1392 \end{center} |
1476 %\end{center} |
1393 |
1477 % |
1394 |
1478 % |
1395 and the set |
1479 %and the set |
1396 |
1480 % |
1397 \begin{center} |
1481 %\begin{center} |
1398 \bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$} |
1482 %\bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$} |
1399 \end{center} |
1483 %\end{center} |
1400 |
1484 % |
1401 prove whether |
1485 %prove whether |
1402 |
1486 % |
1403 \begin{center} |
1487 %\begin{center} |
1404 \bl{$L(rev(r)) = Rev (L(r))$} |
1488 %\bl{$L(rev(r)) = Rev (L(r))$} |
1405 \end{center} |
1489 %\end{center} |
1406 |
1490 % |
1407 \end{frame} |
1491 %\end{frame} |
1408 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1409 |
1493 |
1410 |
1494 |
1411 |
1495 |
1412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |