hws/proof.tex
changeset 953 5e070fb0332a
parent 402 55f097ab96c9
equal deleted inserted replaced
952:33b3e790e1d4 953:5e070fb0332a
    84 \noindent
    84 \noindent
    85 According to 1.~above we need to prove $P(\ZERO)$, $P(\ONE)$ and $P(d)$. Lets do this in turn.
    85 According to 1.~above we need to prove $P(\ZERO)$, $P(\ONE)$ and $P(d)$. Lets do this in turn.
    86 
    86 
    87 \begin{itemize}
    87 \begin{itemize}
    88 \item First Case: $P(\ZERO)$ is $L(der\,c\,\ZERO) = Der\,c\,(L(\ZERO))$ (a). We have $der\,c\,\ZERO = \ZERO$ 
    88 \item First Case: $P(\ZERO)$ is $L(der\,c\,\ZERO) = Der\,c\,(L(\ZERO))$ (a). We have $der\,c\,\ZERO = \ZERO$ 
    89 and $L(\ZERO) = \ZERO$. We also have $Der\,c\,\ZERO = \ZERO$. Hence we have $\ZERO = \ZERO$ in (a). 
    89 and $L(\ZERO) = \emptyset$. We also have $Der\,c\,L(\ZERO) = L(\ZERO$). Hence we have $\emptyset = \emptyset$ in (a). 
    90 
    90 
    91 \item Second  Case: $P(\ONE)$ is $L(der\,c\,\ONE) = Der\,c\,(L(\ONE))$ (b). We have $der\,c\,\ONE = \ZERO$,
    91 \item Second  Case: $P(\ONE)$ is $L(der\,c\,\ONE) = Der\,c\,(L(\ONE))$ (b). We have $der\,c\,\ONE = \ZERO$,
    92 $L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \ZERO$. Hence we have 
    92 $L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \emptyset$. Hence we have 
    93 $\ZERO = \ZERO$ in (b). 
    93 $\emptyset = \emptyset$ in (b). 
    94 
    94 
    95 \item Third  Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$. 
    95 \item Third  Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$. 
    96 
    96 
    97 $d = c$: We have $der\,c\,c = \ONE$ and $L(\ONE) = \{\texttt{""}\}$. 
    97 $d = c$: We have $der\,c\,c = \ONE$ and $L(\ONE) = \{\texttt{""}\}$. 
    98 We also have $L(c) = \{\texttt{"}c\texttt{"}\}$ and $Der\,c\,\{\texttt{"}c\texttt{"}\} = \{\texttt{""}\}$. Hence we have 
    98 We also have $L(c) = \{\texttt{"}c\texttt{"}\}$ and $Der\,c\,\{\texttt{"}c\texttt{"}\} = \{\texttt{""}\}$. Hence we have 
    99 $\{\texttt{""}\} = \{\texttt{""}\}$ in (c). 
    99 $\{\texttt{""}\} = \{\texttt{""}\}$ in (c). 
   100 
   100 
   101 $d \not=c$: We have $der\,c\,d = \ZERO$.
   101 $d \not=c$: We have $der\,c\,d = \ZERO$.
   102 We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \ZERO$. Hence we have 
   102 We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \emptyset$. Hence we have 
   103 $\ZERO = \ZERO$  in (c). 
   103 $\emptyset = \emptyset$  in (c). 
   104 \end{itemize}
   104 \end{itemize}
   105 
   105 
   106 \noindent
   106 \noindent
   107 These were the easy base cases. Now come the inductive cases.
   107 These were the easy base cases. Now come the inductive cases.
   108 
   108 
   190 
   190 
   191 \begin{center}
   191 \begin{center}
   192 $Der\,c\,(L(r^*)) = Der\,c\,(L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n) = (Der\,c\,L(r)^0) \cup Der\,c\,(\bigcup_{n \ge 1} L(r)^n)$
   192 $Der\,c\,(L(r^*)) = Der\,c\,(L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n) = (Der\,c\,L(r)^0) \cup Der\,c\,(\bigcup_{n \ge 1} L(r)^n)$
   193 \end{center}
   193 \end{center}
   194 
   194 
   195 The first union ``disappears'' since $Der\,c\,(L(r)^0) = \ZERO$.
   195 The first union ``disappears'' since $Der\,c\,(L(r)^0) = \emptyset$.
   196 
   196 
   197 
   197 
   198 \end{document}
   198 \end{document}
   199 
   199 
   200 %%% Local Variables: 
   200 %%% Local Variables: