diff -r 33b3e790e1d4 -r 5e070fb0332a hws/proof.tex --- a/hws/proof.tex Tue Oct 31 12:52:36 2023 +0000 +++ b/hws/proof.tex Sat Nov 04 18:28:09 2023 +0000 @@ -86,11 +86,11 @@ \begin{itemize} \item First Case: $P(\ZERO)$ is $L(der\,c\,\ZERO) = Der\,c\,(L(\ZERO))$ (a). We have $der\,c\,\ZERO = \ZERO$ -and $L(\ZERO) = \ZERO$. We also have $Der\,c\,\ZERO = \ZERO$. Hence we have $\ZERO = \ZERO$ in (a). +and $L(\ZERO) = \emptyset$. We also have $Der\,c\,L(\ZERO) = L(\ZERO$). Hence we have $\emptyset = \emptyset$ in (a). \item Second Case: $P(\ONE)$ is $L(der\,c\,\ONE) = Der\,c\,(L(\ONE))$ (b). We have $der\,c\,\ONE = \ZERO$, -$L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \ZERO$. Hence we have -$\ZERO = \ZERO$ in (b). +$L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \emptyset$. Hence we have +$\emptyset = \emptyset$ in (b). \item Third Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$. @@ -99,8 +99,8 @@ $\{\texttt{""}\} = \{\texttt{""}\}$ in (c). $d \not=c$: We have $der\,c\,d = \ZERO$. -We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \ZERO$. Hence we have -$\ZERO = \ZERO$ in (c). +We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \emptyset$. Hence we have +$\emptyset = \emptyset$ in (c). \end{itemize} \noindent @@ -192,7 +192,7 @@ $Der\,c\,(L(r^*)) = Der\,c\,(L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n) = (Der\,c\,L(r)^0) \cup Der\,c\,(\bigcup_{n \ge 1} L(r)^n)$ \end{center} -The first union ``disappears'' since $Der\,c\,(L(r)^0) = \ZERO$. +The first union ``disappears'' since $Der\,c\,(L(r)^0) = \emptyset$. \end{document}