125 \end{center} |
125 \end{center} |
126 |
126 |
127 holds for every set of strings $A$ and $B$. That means the right-hand side of (d) is also $Der\,c\,(L(r_1)) \cup Der\,c\,(L(r_2))$, |
127 holds for every set of strings $A$ and $B$. That means the right-hand side of (d) is also $Der\,c\,(L(r_1)) \cup Der\,c\,(L(r_2))$, |
128 because $L(r_1 + r_2) = L(r_1) \cup L(r_2)$. And we are done with the fourth case. |
128 because $L(r_1 + r_2) = L(r_1) \cup L(r_2)$. And we are done with the fourth case. |
129 |
129 |
130 \item Fifth Case: |
130 \item Fifth Case: $P(r_1 \cdot r_2)$ is $L(der\,c\,(r_1 \cdot r_2)) = Der\,c\,(L(r_1 \cdot r_2))$ (e). We can assume already: |
|
131 |
|
132 \begin{center} |
|
133 \begin{tabular}{ll} |
|
134 $P(r_1)$: & $L(der\,c\,r_1) = Der\,c\,(L(r_1))$ (I)\\ |
|
135 $P(r_2)$: & $L(der\,c\,r_2) = Der\,c\,(L(r_2))$ (II) |
|
136 \end{tabular} |
|
137 \end{center} |
|
138 |
|
139 Let us first consider the case where $nullable(r_1)$ holds. Then |
|
140 |
|
141 \[ |
|
142 der\,c\,(r_1 \cdot r_2) = ((der\,c\,r_1) \cdot r_2) + (der\,c\,r_2). |
|
143 \] |
|
144 |
|
145 The corresponding language of the right-hand side is |
|
146 |
|
147 \[ |
|
148 (L(der\,c\,r_1) \,@\, L(r_2)) \cup L(der\,c\,r_2). |
|
149 \] |
|
150 |
|
151 By the induction hypotheses (I) and (II), this is equal to |
|
152 |
|
153 \[ |
|
154 (Der\,c\,(L(r_1)) \,@\, L(r_2)) \cup (Der\,c\,(L(r_2)).\;\;(**) |
|
155 \] |
|
156 |
|
157 We also know that $L(r_1 \cdot r_2) = L(r_1) \,@\,L(r_2)$. We have to know what |
|
158 $Der\,c\,(L(r_1) \,@\,L(r_2))$ is. |
|
159 |
|
160 Let us analyse what |
|
161 $Der\,c\,(A \,@\, B)$ is for arbitrary sets of strings $A$ and $B$. If $A$ does \emph{not} |
|
162 contain the empty string, then every string in $A\,@\,B$ is of the form $s_1 \,@\, s_2$ where |
|
163 $s_1 \in A$ and $s_2 \in B$. So if $s_1$ starts with $c$ then we just have to remove it. Consequently, |
|
164 $Der\,c\,(A \,@\, B) = (Der\,c\,(A)) \,@\, B$. This case does not apply here though, because we already |
|
165 proved that if $r_1$ is nullable, then $L(r_1)$ contains the empty string. In this case, every string |
|
166 in $A\,@\,B$ is either of the form $s_1 \,@\, s_2$, with $s_1 \in A$ and $s_2 \in B$, or |
|
167 $s_3$ with $s_3 \in B$. This means $Der\,c\,(A \,@\, B) = ((Der\,c\,(A)) \,@\, B) \cup Der\,c\,B$. |
|
168 But this proves that (**) is $Der\,c\,(L(r_1) \,@\, L(r_2))$. |
|
169 |
|
170 Similarly in the case where $r_1$ is \emph{not} nullable. |
131 |
171 |
132 \item Sixth Case: |
172 \item Sixth Case: |
133 \end{itemize} |
173 \end{itemize} |
134 |
174 |
135 \end{document} |
175 \end{document} |