proof.tex
changeset 20 32af6d4de262
child 21 4e5092ab450a
equal deleted inserted replaced
19:f702fd716bd8 20:32af6d4de262
       
     1 \documentclass{article}
       
     2 \usepackage{charter}
       
     3 \usepackage{hyperref}
       
     4 \usepackage{amssymb}
       
     5 \usepackage{amsmath}
       
     6 
       
     7 \newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
       
     8 \begin{document}
       
     9 
       
    10 \section*{Proof}
       
    11 
       
    12 Recall the definitions for regular expressions and the language associated with a regular expression:
       
    13 
       
    14 \begin{center}
       
    15 \begin{tabular}{c}
       
    16 \begin{tabular}[t]{rcl}
       
    17   $r$ & $::=$  & $\varnothing$  \\
       
    18          & $\mid$ & $\epsilon$       \\
       
    19          & $\mid$ & $c$                         \\
       
    20          & $\mid$ & $r_1 \cdot r_2$ \\
       
    21          & $\mid$ & $r_1 + r_2$  \\
       
    22          & $\mid$ & $r^*$                 \\
       
    23   \end{tabular}\hspace{10mm}
       
    24 \begin{tabular}[t]{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
       
    25 $L(\varnothing)$ & $\dn$ & $\varnothing$ \\
       
    26 $L(\epsilon)$       & $\dn$ & $\{\texttt{""}\}$       \\
       
    27 $L(c)$                   & $\dn$ & $\{\texttt{"}c\texttt{"}\}$                         \\
       
    28 $L(r_1 \cdot r_2)$   & $\dn$ & $L(r_1) \,@\, L(r_2)$ \\
       
    29 $L(r_1 + r_2)$         & $\dn$ & $L(r_1) \cup L(r_2)$  \\
       
    30  $L(r^*)$        & $\dn$ & $\bigcup_{n\ge 0} L(r)^n$                 \\
       
    31   \end{tabular}
       
    32 \end{tabular}
       
    33 \end{center}
       
    34 
       
    35 \noindent
       
    36 We also defined the notion of a derivative of a regular expression (the derivative with respect to a character):
       
    37 
       
    38 \begin{center}
       
    39 \begin{tabular}{lcl}
       
    40   $der\, c\, (\varnothing)$    & $\dn$ & $\varnothing$  \\
       
    41   $der\, c\, (\epsilon)$          & $\dn$ & $\varnothing$ \\
       
    42   $der\, c\, (d)$                      & $\dn$ & if $c = d$ then $\epsilon$ else $\varnothing$\\
       
    43   $der\, c\, (r_1 + r_2)$        & $\dn$ & $(der\, c\, r_1) + (der\, c\, r_2)$ \\
       
    44   $der\, c\, (r_1 \cdot r_2)$ & $\dn$  & if $nullable(r_1)$\\
       
    45        & & then $((der\, c\, r_1) \cdot r_2) + (der\, c\, r_2)$\\ 
       
    46        & & else $(der\, c\, r_1) \cdot r_2$\\
       
    47   $der\, c\, (r^*)$                   & $\dn$ & $(der\, c\, r) \cdot (r^*)$\\
       
    48   \end{tabular}
       
    49 \end{center}
       
    50 
       
    51 \noindent
       
    52 With our definition of regular expressions comes an induction principle. Given a property $P$ over 
       
    53 regular expressions. We can establish that $\forall r.\; P(r)$ holds, provided we can show the following:
       
    54 
       
    55 \begin{enumerate}
       
    56 \item $P(\varnothing)$, $P(\epsilon)$ and $P(c)$ all hold,
       
    57 \item $P(r_1 + r_2)$ holds under the induction hypotheses that 
       
    58 $P(r_1)$ and $P(r_2)$ hold,
       
    59 \item $P(r_1 \cdot r_2)$ holds under the induction hypotheses that 
       
    60 $P(r_1)$ and $P(r_2)$ hold, and
       
    61 \item $P(r^*)$ holds under the induction hypothesis that $P(r)$ holds.
       
    62 \end{enumerate}
       
    63 
       
    64 \noindent
       
    65 Let us try out an induction proof. Recall the definition
       
    66 
       
    67 \begin{center}
       
    68 $Der\, c\, A \dn \{ s\;\mid\; c\!::\!s \in A\}$
       
    69 \end{center}
       
    70 
       
    71 \noindent
       
    72 whereby $A$ is a set of strings. We like to prove
       
    73 
       
    74 \begin{center}
       
    75 \begin{tabular}{l}
       
    76 $P(r) \dn $ \hspace{4mm} $L(der\,c\,r) = Der\,c\,(L(r))$
       
    77 \end{tabular}
       
    78 \end{center}
       
    79 
       
    80 \noindent
       
    81 by induction over the regular expression $r$.
       
    82 
       
    83 
       
    84 \newpage
       
    85 \noindent
       
    86 {\bf Proof}
       
    87 
       
    88 \noindent
       
    89 According to 1.~above we need to prove $P(\varnothing)$, $P(\epsilon)$ and $P(d)$. Lets do this in turn.
       
    90 
       
    91 \begin{itemize}
       
    92 \item First Case: $P(\varnothing)$ is $L(der\,c\,\varnothing) = Der\,c\,(L(\varnothing))$ (a). We have $der\,c\,\varnothing = \varnothing$ 
       
    93 and $L(\varnothing) = \varnothing$. We also have $Der\,c\,\varnothing = \varnothing$. Hence we have $\varnothing = \varnothing$ in (a). 
       
    94 
       
    95 \item Second  Case: $P(\epsilon)$ is $L(der\,c\,\epsilon) = Der\,c\,(L(\epsilon))$ (b). We have $der\,c\,\epsilon = \varnothing$,
       
    96 $L(\varnothing) = \varnothing$ and $L(\epsilon) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \varnothing$. Hence we have 
       
    97 $\varnothing = \varnothing$ in (b). 
       
    98 
       
    99 \item Third  Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$. 
       
   100 
       
   101 $d = c$: We have $der\,c\,c = \epsilon$ and $L(\epsilon) = \{\texttt{""}\}$. 
       
   102 We also have $L(c) = \{\texttt{"}c\texttt{"}\}$ and $Der\,c\,\{\texttt{"}c\texttt{"}\} = \{\texttt{""}\}$. Hence we have 
       
   103 $\{\texttt{""}\} = \{\texttt{""}\}$ in (c). 
       
   104 
       
   105 $d \not=c$: We have $der\,c\,d = \varnothing$.
       
   106 We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \varnothing$. Hence we have 
       
   107 $\varnothing = \varnothing$  in (c). 
       
   108 
       
   109 \item Fourth Case: $P(r_1 + r_2)$ is $L(der\,c\,(r_1 + r_2)) = Der\,c\,(L(r_1 + r_2))$ (d). This is what we have to show.
       
   110 We can assume already:
       
   111 
       
   112 \begin{center}
       
   113 \begin{tabular}{ll}
       
   114 $P(r_1)$: & $L(der\,c\,r_1) = Der\,c\,(L(r_1))$ (I)\\
       
   115 $P(r_2)$: & $L(der\,c\,r_2) = Der\,c\,(L(r_2))$ (II)
       
   116 \end{tabular}
       
   117 \end{center}
       
   118 
       
   119 We have that $der\,c\,(r_1 + r_2) = (der\,c\,r_1) + (der\,c\,r_2)$ and also $L((der\,c\,r_1) + (der\,c\,r_2)) = L(der\,c\,r_1) \cup L(der\,c\,r_2)$.
       
   120 By (I) and (II) we know that the left-hand side is $Der\,c\,(L(r_1)) \cup Der\,c\,(L(r_2))$.  You need to ponder a bit, but you should see
       
   121 that 
       
   122 
       
   123 \begin{center}
       
   124 $Der\,c(A \cup B) = (Der\,c\,A) \cup (Der\,c\,B)$
       
   125 \end{center}
       
   126 
       
   127 holds for every set of strings $A$ and $B$. That means the right-hand side of (d) is also $Der\,c\,(L(r_1)) \cup Der\,c\,(L(r_2))$,
       
   128 because $L(r_1 + r_2) = L(r_1) \cup L(r_2)$. And we are done with the fourth case.
       
   129  
       
   130 \item Fifth Case:
       
   131 
       
   132 \item Sixth Case:
       
   133 \end{itemize}
       
   134 
       
   135 \end{document}
       
   136 
       
   137 %%% Local Variables: 
       
   138 %%% mode: latex
       
   139 %%% TeX-master: t
       
   140 %%% End: